| #include <u.h> |
| #include <libc.h> |
| #include <draw.h> |
| #include <memdraw.h> |
| |
| int drawdebug; |
| static int tablesbuilt; |
| |
| /* perfect approximation to NTSC = .299r+.587g+.114b when 0 ≤ r,g,b < 256 */ |
| #define RGB2K(r,g,b) ((156763*(r)+307758*(g)+59769*(b))>>19) |
| |
| /* |
| * For 16-bit values, x / 255 == (t = x+1, (t+(t>>8)) >> 8). |
| * We add another 127 to round to the nearest value rather |
| * than truncate. |
| * |
| * CALCxy does x bytewise calculations on y input images (x=1,4; y=1,2). |
| * CALC2x does two parallel 16-bit calculations on y input images (y=1,2). |
| */ |
| #define CALC11(a, v, tmp) \ |
| (tmp=(a)*(v)+128, (tmp+(tmp>>8))>>8) |
| |
| #define CALC12(a1, v1, a2, v2, tmp) \ |
| (tmp=(a1)*(v1)+(a2)*(v2)+128, (tmp+(tmp>>8))>>8) |
| |
| #define MASK 0xFF00FF |
| |
| #define CALC21(a, vvuu, tmp) \ |
| (tmp=(a)*(vvuu)+0x00800080, ((tmp+((tmp>>8)&MASK))>>8)&MASK) |
| |
| #define CALC41(a, rgba, tmp1, tmp2) \ |
| (CALC21(a, rgba & MASK, tmp1) | \ |
| (CALC21(a, (rgba>>8)&MASK, tmp2)<<8)) |
| |
| #define CALC22(a1, vvuu1, a2, vvuu2, tmp) \ |
| (tmp=(a1)*(vvuu1)+(a2)*(vvuu2)+0x00800080, ((tmp+((tmp>>8)&MASK))>>8)&MASK) |
| |
| #define CALC42(a1, rgba1, a2, rgba2, tmp1, tmp2) \ |
| (CALC22(a1, rgba1 & MASK, a2, rgba2 & MASK, tmp1) | \ |
| (CALC22(a1, (rgba1>>8) & MASK, a2, (rgba2>>8) & MASK, tmp2)<<8)) |
| |
| static void mktables(void); |
| typedef int Subdraw(Memdrawparam*); |
| static Subdraw chardraw, alphadraw, memoptdraw; |
| |
| static Memimage* memones; |
| static Memimage* memzeros; |
| Memimage *memwhite; |
| Memimage *memblack; |
| Memimage *memtransparent; |
| Memimage *memopaque; |
| |
| int __ifmt(Fmt*); |
| |
| void |
| memimageinit(void) |
| { |
| static int didinit = 0; |
| |
| if(didinit) |
| return; |
| |
| didinit = 1; |
| |
| mktables(); |
| _memmkcmap(); |
| |
| fmtinstall('R', Rfmt); |
| fmtinstall('P', Pfmt); |
| fmtinstall('b', __ifmt); |
| |
| memones = allocmemimage(Rect(0,0,1,1), GREY1); |
| memones->flags |= Frepl; |
| memones->clipr = Rect(-0x3FFFFFF, -0x3FFFFFF, 0x3FFFFFF, 0x3FFFFFF); |
| *byteaddr(memones, ZP) = ~0; |
| |
| memzeros = allocmemimage(Rect(0,0,1,1), GREY1); |
| memzeros->flags |= Frepl; |
| memzeros->clipr = Rect(-0x3FFFFFF, -0x3FFFFFF, 0x3FFFFFF, 0x3FFFFFF); |
| *byteaddr(memzeros, ZP) = 0; |
| |
| if(memones == nil || memzeros == nil) |
| assert(0 /*cannot initialize memimage library */); /* RSC BUG */ |
| |
| memwhite = memones; |
| memblack = memzeros; |
| memopaque = memones; |
| memtransparent = memzeros; |
| } |
| |
| u32int _imgtorgba(Memimage*, u32int); |
| u32int _rgbatoimg(Memimage*, u32int); |
| u32int _pixelbits(Memimage*, Point); |
| |
| #define DBG if(drawdebug) |
| static Memdrawparam par; |
| |
| Memdrawparam* |
| _memimagedrawsetup(Memimage *dst, Rectangle r, Memimage *src, Point p0, Memimage *mask, Point p1, int op) |
| { |
| if(mask == nil) |
| mask = memopaque; |
| |
| DBG print("memimagedraw %p/%luX %R @ %p %p/%luX %P %p/%luX %P... ", dst, dst->chan, r, dst->data->bdata, src, src->chan, p0, mask, mask->chan, p1); |
| |
| if(drawclip(dst, &r, src, &p0, mask, &p1, &par.sr, &par.mr) == 0){ |
| /* if(drawdebug) */ |
| /* iprint("empty clipped rectangle\n"); */ |
| return nil; |
| } |
| |
| if(op < Clear || op > SoverD){ |
| /* if(drawdebug) */ |
| /* iprint("op out of range: %d\n", op); */ |
| return nil; |
| } |
| |
| par.op = op; |
| par.dst = dst; |
| par.r = r; |
| par.src = src; |
| /* par.sr set by drawclip */ |
| par.mask = mask; |
| /* par.mr set by drawclip */ |
| |
| par.state = 0; |
| if(src->flags&Frepl){ |
| par.state |= Replsrc; |
| if(Dx(src->r)==1 && Dy(src->r)==1){ |
| par.sval = pixelbits(src, src->r.min); |
| par.state |= Simplesrc; |
| par.srgba = _imgtorgba(src, par.sval); |
| par.sdval = _rgbatoimg(dst, par.srgba); |
| if((par.srgba&0xFF) == 0 && (op&DoutS)){ |
| /* if (drawdebug) iprint("fill with transparent source\n"); */ |
| return nil; /* no-op successfully handled */ |
| } |
| if((par.srgba&0xFF) == 0xFF) |
| par.state |= Fullsrc; |
| } |
| } |
| |
| if(mask->flags & Frepl){ |
| par.state |= Replmask; |
| if(Dx(mask->r)==1 && Dy(mask->r)==1){ |
| par.mval = pixelbits(mask, mask->r.min); |
| if(par.mval == 0 && (op&DoutS)){ |
| /* if(drawdebug) iprint("fill with zero mask\n"); */ |
| return nil; /* no-op successfully handled */ |
| } |
| par.state |= Simplemask; |
| if(par.mval == ~0) |
| par.state |= Fullmask; |
| par.mrgba = _imgtorgba(mask, par.mval); |
| } |
| } |
| |
| /* if(drawdebug) */ |
| /* iprint("dr %R sr %R mr %R...", r, par.sr, par.mr); */ |
| DBG print("draw dr %R sr %R mr %R %lux\n", r, par.sr, par.mr, par.state); |
| |
| return ∥ |
| } |
| |
| void |
| _memimagedraw(Memdrawparam *par) |
| { |
| /* |
| * Now that we've clipped the parameters down to be consistent, we |
| * simply try sub-drawing routines in order until we find one that was able |
| * to handle us. If the sub-drawing routine returns zero, it means it was |
| * unable to satisfy the request, so we do not return. |
| */ |
| |
| /* |
| * Hardware support. Each video driver provides this function, |
| * which checks to see if there is anything it can help with. |
| * There could be an if around this checking to see if dst is in video memory. |
| */ |
| DBG print("test hwdraw\n"); |
| if(hwdraw(par)){ |
| /*if(drawdebug) iprint("hw handled\n"); */ |
| DBG print("hwdraw handled\n"); |
| return; |
| } |
| /* |
| * Optimizations using memmove and memset. |
| */ |
| DBG print("test memoptdraw\n"); |
| if(memoptdraw(par)){ |
| /*if(drawdebug) iprint("memopt handled\n"); */ |
| DBG print("memopt handled\n"); |
| return; |
| } |
| |
| /* |
| * Character drawing. |
| * Solid source color being painted through a boolean mask onto a high res image. |
| */ |
| DBG print("test chardraw\n"); |
| if(chardraw(par)){ |
| /*if(drawdebug) iprint("chardraw handled\n"); */ |
| DBG print("chardraw handled\n"); |
| return; |
| } |
| |
| /* |
| * General calculation-laden case that does alpha for each pixel. |
| */ |
| DBG print("do alphadraw\n"); |
| alphadraw(par); |
| /*if(drawdebug) iprint("alphadraw handled\n"); */ |
| DBG print("alphadraw handled\n"); |
| } |
| #undef DBG |
| |
| /* |
| * Clip the destination rectangle further based on the properties of the |
| * source and mask rectangles. Once the destination rectangle is properly |
| * clipped, adjust the source and mask rectangles to be the same size. |
| * Then if source or mask is replicated, move its clipped rectangle |
| * so that its minimum point falls within the repl rectangle. |
| * |
| * Return zero if the final rectangle is null. |
| */ |
| int |
| drawclip(Memimage *dst, Rectangle *r, Memimage *src, Point *p0, Memimage *mask, Point *p1, Rectangle *sr, Rectangle *mr) |
| { |
| Point rmin, delta; |
| int splitcoords; |
| Rectangle omr; |
| |
| if(r->min.x>=r->max.x || r->min.y>=r->max.y) |
| return 0; |
| splitcoords = (p0->x!=p1->x) || (p0->y!=p1->y); |
| /* clip to destination */ |
| rmin = r->min; |
| if(!rectclip(r, dst->r) || !rectclip(r, dst->clipr)) |
| return 0; |
| /* move mask point */ |
| p1->x += r->min.x-rmin.x; |
| p1->y += r->min.y-rmin.y; |
| /* move source point */ |
| p0->x += r->min.x-rmin.x; |
| p0->y += r->min.y-rmin.y; |
| /* map destination rectangle into source */ |
| sr->min = *p0; |
| sr->max.x = p0->x+Dx(*r); |
| sr->max.y = p0->y+Dy(*r); |
| /* sr is r in source coordinates; clip to source */ |
| if(!(src->flags&Frepl) && !rectclip(sr, src->r)) |
| return 0; |
| if(!rectclip(sr, src->clipr)) |
| return 0; |
| /* compute and clip rectangle in mask */ |
| if(splitcoords){ |
| /* move mask point with source */ |
| p1->x += sr->min.x-p0->x; |
| p1->y += sr->min.y-p0->y; |
| mr->min = *p1; |
| mr->max.x = p1->x+Dx(*sr); |
| mr->max.y = p1->y+Dy(*sr); |
| omr = *mr; |
| /* mr is now rectangle in mask; clip it */ |
| if(!(mask->flags&Frepl) && !rectclip(mr, mask->r)) |
| return 0; |
| if(!rectclip(mr, mask->clipr)) |
| return 0; |
| /* reflect any clips back to source */ |
| sr->min.x += mr->min.x-omr.min.x; |
| sr->min.y += mr->min.y-omr.min.y; |
| sr->max.x += mr->max.x-omr.max.x; |
| sr->max.y += mr->max.y-omr.max.y; |
| *p1 = mr->min; |
| }else{ |
| if(!(mask->flags&Frepl) && !rectclip(sr, mask->r)) |
| return 0; |
| if(!rectclip(sr, mask->clipr)) |
| return 0; |
| *p1 = sr->min; |
| } |
| |
| /* move source clipping back to destination */ |
| delta.x = r->min.x - p0->x; |
| delta.y = r->min.y - p0->y; |
| r->min.x = sr->min.x + delta.x; |
| r->min.y = sr->min.y + delta.y; |
| r->max.x = sr->max.x + delta.x; |
| r->max.y = sr->max.y + delta.y; |
| |
| /* move source rectangle so sr->min is in src->r */ |
| if(src->flags&Frepl) { |
| delta.x = drawreplxy(src->r.min.x, src->r.max.x, sr->min.x) - sr->min.x; |
| delta.y = drawreplxy(src->r.min.y, src->r.max.y, sr->min.y) - sr->min.y; |
| sr->min.x += delta.x; |
| sr->min.y += delta.y; |
| sr->max.x += delta.x; |
| sr->max.y += delta.y; |
| } |
| *p0 = sr->min; |
| |
| /* move mask point so it is in mask->r */ |
| *p1 = drawrepl(mask->r, *p1); |
| mr->min = *p1; |
| mr->max.x = p1->x+Dx(*sr); |
| mr->max.y = p1->y+Dy(*sr); |
| |
| assert(Dx(*sr) == Dx(*mr) && Dx(*mr) == Dx(*r)); |
| assert(Dy(*sr) == Dy(*mr) && Dy(*mr) == Dy(*r)); |
| assert(ptinrect(*p0, src->r)); |
| assert(ptinrect(*p1, mask->r)); |
| assert(ptinrect(r->min, dst->r)); |
| |
| return 1; |
| } |
| |
| /* |
| * Conversion tables. |
| */ |
| static uchar replbit[1+8][256]; /* replbit[x][y] is the replication of the x-bit quantity y to 8-bit depth */ |
| static uchar conv18[256][8]; /* conv18[x][y] is the yth pixel in the depth-1 pixel x */ |
| static uchar conv28[256][4]; /* ... */ |
| static uchar conv48[256][2]; |
| |
| /* |
| * bitmap of how to replicate n bits to fill 8, for 1 ≤ n ≤ 8. |
| * the X's are where to put the bottom (ones) bit of the n-bit pattern. |
| * only the top 8 bits of the result are actually used. |
| * (the lower 8 bits are needed to get bits in the right place |
| * when n is not a divisor of 8.) |
| * |
| * Should check to see if its easier to just refer to replmul than |
| * use the precomputed values in replbit. On PCs it may well |
| * be; on machines with slow multiply instructions it probably isn't. |
| */ |
| #define a ((((((((((((((((0 |
| #define X *2+1) |
| #define _ *2) |
| static int replmul[1+8] = { |
| 0, |
| a X X X X X X X X X X X X X X X X, |
| a _ X _ X _ X _ X _ X _ X _ X _ X, |
| a _ _ X _ _ X _ _ X _ _ X _ _ X _, |
| a _ _ _ X _ _ _ X _ _ _ X _ _ _ X, |
| a _ _ _ _ X _ _ _ _ X _ _ _ _ X _, |
| a _ _ _ _ _ X _ _ _ _ _ X _ _ _ _, |
| a _ _ _ _ _ _ X _ _ _ _ _ _ X _ _, |
| a _ _ _ _ _ _ _ X _ _ _ _ _ _ _ X, |
| }; |
| #undef a |
| #undef X |
| #undef _ |
| |
| static void |
| mktables(void) |
| { |
| int i, j, mask, sh, small; |
| |
| if(tablesbuilt) |
| return; |
| |
| fmtinstall('R', Rfmt); |
| fmtinstall('P', Pfmt); |
| tablesbuilt = 1; |
| |
| /* bit replication up to 8 bits */ |
| for(i=0; i<256; i++){ |
| for(j=0; j<=8; j++){ /* j <= 8 [sic] */ |
| small = i & ((1<<j)-1); |
| replbit[j][i] = (small*replmul[j])>>8; |
| } |
| } |
| |
| /* bit unpacking up to 8 bits, only powers of 2 */ |
| for(i=0; i<256; i++){ |
| for(j=0, sh=7, mask=1; j<8; j++, sh--) |
| conv18[i][j] = replbit[1][(i>>sh)&mask]; |
| |
| for(j=0, sh=6, mask=3; j<4; j++, sh-=2) |
| conv28[i][j] = replbit[2][(i>>sh)&mask]; |
| |
| for(j=0, sh=4, mask=15; j<2; j++, sh-=4) |
| conv48[i][j] = replbit[4][(i>>sh)&mask]; |
| } |
| } |
| |
| static uchar ones = 0xff; |
| |
| /* |
| * General alpha drawing case. Can handle anything. |
| */ |
| typedef struct Buffer Buffer; |
| struct Buffer { |
| /* used by most routines */ |
| uchar *red; |
| uchar *grn; |
| uchar *blu; |
| uchar *alpha; |
| uchar *grey; |
| u32int *rgba; |
| int delta; /* number of bytes to add to pointer to get next pixel to the right */ |
| |
| /* used by boolcalc* for mask data */ |
| uchar *m; /* ptr to mask data r.min byte; like p->bytermin */ |
| int mskip; /* no. of left bits to skip in *m */ |
| uchar *bm; /* ptr to mask data img->r.min byte; like p->bytey0s */ |
| int bmskip; /* no. of left bits to skip in *bm */ |
| uchar *em; /* ptr to mask data img->r.max.x byte; like p->bytey0e */ |
| int emskip; /* no. of right bits to skip in *em */ |
| }; |
| |
| typedef struct Param Param; |
| typedef Buffer Readfn(Param*, uchar*, int); |
| typedef void Writefn(Param*, uchar*, Buffer); |
| typedef Buffer Calcfn(Buffer, Buffer, Buffer, int, int, int); |
| |
| enum { |
| MAXBCACHE = 16 |
| }; |
| |
| /* giant rathole to customize functions with */ |
| struct Param { |
| Readfn *replcall; |
| Readfn *greymaskcall; |
| Readfn *convreadcall; |
| Writefn *convwritecall; |
| |
| Memimage *img; |
| Rectangle r; |
| int dx; /* of r */ |
| int needbuf; |
| int convgrey; |
| int alphaonly; |
| |
| uchar *bytey0s; /* byteaddr(Pt(img->r.min.x, img->r.min.y)) */ |
| uchar *bytermin; /* byteaddr(Pt(r.min.x, img->r.min.y)) */ |
| uchar *bytey0e; /* byteaddr(Pt(img->r.max.x, img->r.min.y)) */ |
| int bwidth; |
| |
| int replcache; /* if set, cache buffers */ |
| Buffer bcache[MAXBCACHE]; |
| u32int bfilled; |
| uchar *bufbase; |
| int bufoff; |
| int bufdelta; |
| |
| int dir; |
| |
| int convbufoff; |
| uchar *convbuf; |
| Param *convdpar; |
| int convdx; |
| }; |
| |
| static uchar *drawbuf; |
| static int ndrawbuf; |
| static int mdrawbuf; |
| static Param spar, mpar, dpar; /* easier on the stacks */ |
| static Readfn greymaskread, replread, readptr; |
| static Writefn nullwrite; |
| static Calcfn alphacalc0, alphacalc14, alphacalc2810, alphacalc3679, alphacalc5, alphacalc11, alphacalcS; |
| static Calcfn boolcalc14, boolcalc236789, boolcalc1011; |
| |
| static Readfn* readfn(Memimage*); |
| static Readfn* readalphafn(Memimage*); |
| static Writefn* writefn(Memimage*); |
| |
| static Calcfn* boolcopyfn(Memimage*, Memimage*); |
| static Readfn* convfn(Memimage*, Param*, Memimage*, Param*); |
| |
| static Calcfn *alphacalc[Ncomp] = |
| { |
| alphacalc0, /* Clear */ |
| alphacalc14, /* DoutS */ |
| alphacalc2810, /* SoutD */ |
| alphacalc3679, /* DxorS */ |
| alphacalc14, /* DinS */ |
| alphacalc5, /* D */ |
| alphacalc3679, /* DatopS */ |
| alphacalc3679, /* DoverS */ |
| alphacalc2810, /* SinD */ |
| alphacalc3679, /* SatopD */ |
| alphacalc2810, /* S */ |
| alphacalc11, /* SoverD */ |
| }; |
| |
| static Calcfn *boolcalc[Ncomp] = |
| { |
| alphacalc0, /* Clear */ |
| boolcalc14, /* DoutS */ |
| boolcalc236789, /* SoutD */ |
| boolcalc236789, /* DxorS */ |
| boolcalc14, /* DinS */ |
| alphacalc5, /* D */ |
| boolcalc236789, /* DatopS */ |
| boolcalc236789, /* DoverS */ |
| boolcalc236789, /* SinD */ |
| boolcalc236789, /* SatopD */ |
| boolcalc1011, /* S */ |
| boolcalc1011, /* SoverD */ |
| }; |
| |
| static int |
| allocdrawbuf(void) |
| { |
| uchar *p; |
| |
| if(ndrawbuf > mdrawbuf){ |
| p = realloc(drawbuf, ndrawbuf); |
| if(p == nil){ |
| werrstr("memimagedraw out of memory"); |
| return -1; |
| } |
| drawbuf = p; |
| mdrawbuf = ndrawbuf; |
| } |
| return 0; |
| } |
| |
| static void |
| getparam(Param *p, Memimage *img, Rectangle r, int convgrey, int needbuf) |
| { |
| int nbuf; |
| |
| memset(p, 0, sizeof *p); |
| |
| p->img = img; |
| p->r = r; |
| p->dx = Dx(r); |
| p->needbuf = needbuf; |
| p->convgrey = convgrey; |
| |
| assert(img->r.min.x <= r.min.x && r.min.x < img->r.max.x); |
| |
| p->bytey0s = byteaddr(img, Pt(img->r.min.x, img->r.min.y)); |
| p->bytermin = byteaddr(img, Pt(r.min.x, img->r.min.y)); |
| p->bytey0e = byteaddr(img, Pt(img->r.max.x, img->r.min.y)); |
| p->bwidth = sizeof(u32int)*img->width; |
| |
| assert(p->bytey0s <= p->bytermin && p->bytermin <= p->bytey0e); |
| |
| if(p->r.min.x == p->img->r.min.x) |
| assert(p->bytermin == p->bytey0s); |
| |
| nbuf = 1; |
| if((img->flags&Frepl) && Dy(img->r) <= MAXBCACHE && Dy(img->r) < Dy(r)){ |
| p->replcache = 1; |
| nbuf = Dy(img->r); |
| } |
| p->bufdelta = 4*p->dx; |
| p->bufoff = ndrawbuf; |
| ndrawbuf += p->bufdelta*nbuf; |
| } |
| |
| static void |
| clipy(Memimage *img, int *y) |
| { |
| int dy; |
| |
| dy = Dy(img->r); |
| if(*y == dy) |
| *y = 0; |
| else if(*y == -1) |
| *y = dy-1; |
| assert(0 <= *y && *y < dy); |
| } |
| |
| static void |
| dumpbuf(char *s, Buffer b, int n) |
| { |
| int i; |
| uchar *p; |
| |
| print("%s", s); |
| for(i=0; i<n; i++){ |
| print(" "); |
| if(p=b.grey){ |
| print(" k%.2uX", *p); |
| b.grey += b.delta; |
| }else{ |
| if(p=b.red){ |
| print(" r%.2uX", *p); |
| b.red += b.delta; |
| } |
| if(p=b.grn){ |
| print(" g%.2uX", *p); |
| b.grn += b.delta; |
| } |
| if(p=b.blu){ |
| print(" b%.2uX", *p); |
| b.blu += b.delta; |
| } |
| } |
| if((p=b.alpha) != &ones){ |
| print(" α%.2uX", *p); |
| b.alpha += b.delta; |
| } |
| } |
| print("\n"); |
| } |
| |
| /* |
| * For each scan line, we expand the pixels from source, mask, and destination |
| * into byte-aligned red, green, blue, alpha, and grey channels. If buffering is not |
| * needed and the channels were already byte-aligned (grey8, rgb24, rgba32, rgb32), |
| * the readers need not copy the data: they can simply return pointers to the data. |
| * If the destination image is grey and the source is not, it is converted using the NTSC |
| * formula. |
| * |
| * Once we have all the channels, we call either rgbcalc or greycalc, depending on |
| * whether the destination image is color. This is allowed to overwrite the dst buffer (perhaps |
| * the actual data, perhaps a copy) with its result. It should only overwrite the dst buffer |
| * with the same format (i.e. red bytes with red bytes, etc.) A new buffer is returned from |
| * the calculator, and that buffer is passed to a function to write it to the destination. |
| * If the buffer is already pointing at the destination, the writing function is a no-op. |
| */ |
| #define DBG if(drawdebug) |
| static int |
| alphadraw(Memdrawparam *par) |
| { |
| int isgrey, starty, endy, op; |
| int needbuf, dsty, srcy, masky; |
| int y, dir, dx, dy; |
| Buffer bsrc, bdst, bmask; |
| Readfn *rdsrc, *rdmask, *rddst; |
| Calcfn *calc; |
| Writefn *wrdst; |
| Memimage *src, *mask, *dst; |
| Rectangle r, sr, mr; |
| |
| if(drawdebug) |
| print("alphadraw %R\n", par->r); |
| r = par->r; |
| dx = Dx(r); |
| dy = Dy(r); |
| |
| ndrawbuf = 0; |
| |
| src = par->src; |
| mask = par->mask; |
| dst = par->dst; |
| sr = par->sr; |
| mr = par->mr; |
| op = par->op; |
| |
| isgrey = dst->flags&Fgrey; |
| |
| /* |
| * Buffering when src and dst are the same bitmap is sufficient but not |
| * necessary. There are stronger conditions we could use. We could |
| * check to see if the rectangles intersect, and if simply moving in the |
| * correct y direction can avoid the need to buffer. |
| */ |
| needbuf = (src->data == dst->data); |
| |
| getparam(&spar, src, sr, isgrey, needbuf); |
| getparam(&dpar, dst, r, isgrey, needbuf); |
| getparam(&mpar, mask, mr, 0, needbuf); |
| |
| dir = (needbuf && byteaddr(dst, r.min) > byteaddr(src, sr.min)) ? -1 : 1; |
| spar.dir = mpar.dir = dpar.dir = dir; |
| |
| /* |
| * If the mask is purely boolean, we can convert from src to dst format |
| * when we read src, and then just copy it to dst where the mask tells us to. |
| * This requires a boolean (1-bit grey) mask and lack of a source alpha channel. |
| * |
| * The computation is accomplished by assigning the function pointers as follows: |
| * rdsrc - read and convert source into dst format in a buffer |
| * rdmask - convert mask to bytes, set pointer to it |
| * rddst - fill with pointer to real dst data, but do no reads |
| * calc - copy src onto dst when mask says to. |
| * wrdst - do nothing |
| * This is slightly sleazy, since things aren't doing exactly what their names say, |
| * but it avoids a fair amount of code duplication to make this a case here |
| * rather than have a separate booldraw. |
| */ |
| /*if(drawdebug) iprint("flag %lud mchan %lux=?%x dd %d\n", src->flags&Falpha, mask->chan, GREY1, dst->depth); */ |
| if(!(src->flags&Falpha) && mask->chan == GREY1 && dst->depth >= 8 && op == SoverD){ |
| /*if(drawdebug) iprint("boolcopy..."); */ |
| rdsrc = convfn(dst, &dpar, src, &spar); |
| rddst = readptr; |
| rdmask = readfn(mask); |
| calc = boolcopyfn(dst, mask); |
| wrdst = nullwrite; |
| }else{ |
| /* usual alphadraw parameter fetching */ |
| rdsrc = readfn(src); |
| rddst = readfn(dst); |
| wrdst = writefn(dst); |
| calc = alphacalc[op]; |
| |
| /* |
| * If there is no alpha channel, we'll ask for a grey channel |
| * and pretend it is the alpha. |
| */ |
| if(mask->flags&Falpha){ |
| rdmask = readalphafn(mask); |
| mpar.alphaonly = 1; |
| }else{ |
| mpar.greymaskcall = readfn(mask); |
| mpar.convgrey = 1; |
| rdmask = greymaskread; |
| |
| /* |
| * Should really be above, but then boolcopyfns would have |
| * to deal with bit alignment, and I haven't written that. |
| * |
| * This is a common case for things like ellipse drawing. |
| * When there's no alpha involved and the mask is boolean, |
| * we can avoid all the division and multiplication. |
| */ |
| if(mask->chan == GREY1 && !(src->flags&Falpha)) |
| calc = boolcalc[op]; |
| else if(op == SoverD && !(src->flags&Falpha)) |
| calc = alphacalcS; |
| } |
| } |
| |
| /* |
| * If the image has a small enough repl rectangle, |
| * we can just read each line once and cache them. |
| */ |
| if(spar.replcache){ |
| spar.replcall = rdsrc; |
| rdsrc = replread; |
| } |
| if(mpar.replcache){ |
| mpar.replcall = rdmask; |
| rdmask = replread; |
| } |
| |
| if(allocdrawbuf() < 0) |
| return 0; |
| |
| /* |
| * Before we were saving only offsets from drawbuf in the parameter |
| * structures; now that drawbuf has been grown to accomodate us, |
| * we can fill in the pointers. |
| */ |
| spar.bufbase = drawbuf+spar.bufoff; |
| mpar.bufbase = drawbuf+mpar.bufoff; |
| dpar.bufbase = drawbuf+dpar.bufoff; |
| spar.convbuf = drawbuf+spar.convbufoff; |
| |
| if(dir == 1){ |
| starty = 0; |
| endy = dy; |
| }else{ |
| starty = dy-1; |
| endy = -1; |
| } |
| |
| /* |
| * srcy, masky, and dsty are offsets from the top of their |
| * respective Rectangles. they need to be contained within |
| * the rectangles, so clipy can keep them there without division. |
| */ |
| srcy = (starty + sr.min.y - src->r.min.y)%Dy(src->r); |
| masky = (starty + mr.min.y - mask->r.min.y)%Dy(mask->r); |
| dsty = starty + r.min.y - dst->r.min.y; |
| |
| assert(0 <= srcy && srcy < Dy(src->r)); |
| assert(0 <= masky && masky < Dy(mask->r)); |
| assert(0 <= dsty && dsty < Dy(dst->r)); |
| |
| if(drawdebug) |
| print("alphadraw: rdsrc=%p rdmask=%p rddst=%p calc=%p wrdst=%p\n", |
| rdsrc, rdmask, rddst, calc, wrdst); |
| for(y=starty; y!=endy; y+=dir, srcy+=dir, masky+=dir, dsty+=dir){ |
| clipy(src, &srcy); |
| clipy(dst, &dsty); |
| clipy(mask, &masky); |
| |
| bsrc = rdsrc(&spar, spar.bufbase, srcy); |
| DBG print("["); |
| bmask = rdmask(&mpar, mpar.bufbase, masky); |
| DBG print("]\n"); |
| bdst = rddst(&dpar, dpar.bufbase, dsty); |
| DBG dumpbuf("src", bsrc, dx); |
| DBG dumpbuf("mask", bmask, dx); |
| DBG dumpbuf("dst", bdst, dx); |
| bdst = calc(bdst, bsrc, bmask, dx, isgrey, op); |
| DBG dumpbuf("bdst", bdst, dx); |
| wrdst(&dpar, dpar.bytermin+dsty*dpar.bwidth, bdst); |
| } |
| |
| return 1; |
| } |
| #undef DBG |
| |
| static Buffer |
| alphacalc0(Buffer bdst, Buffer b1, Buffer b2, int dx, int grey, int op) |
| { |
| USED(grey); |
| USED(op); |
| memset(bdst.rgba, 0, dx*bdst.delta); |
| return bdst; |
| } |
| |
| /* |
| * Do the channels in the buffers match enough |
| * that we can do word-at-a-time operations |
| * on the pixels? |
| */ |
| static int |
| chanmatch(Buffer *bdst, Buffer *bsrc) |
| { |
| uchar *drgb, *srgb; |
| |
| /* |
| * first, r, g, b must be in the same place |
| * in the rgba word. |
| */ |
| drgb = (uchar*)bdst->rgba; |
| srgb = (uchar*)bsrc->rgba; |
| if(bdst->red - drgb != bsrc->red - srgb |
| || bdst->blu - drgb != bsrc->blu - srgb |
| || bdst->grn - drgb != bsrc->grn - srgb) |
| return 0; |
| |
| /* |
| * that implies alpha is in the same place, |
| * if it is there at all (it might be == &ones). |
| * if the destination is &ones, we can scribble |
| * over the rgba slot just fine. |
| */ |
| if(bdst->alpha == &ones) |
| return 1; |
| |
| /* |
| * if the destination is not ones but the src is, |
| * then the simultaneous calculation will use |
| * bogus bytes from the src's rgba. no good. |
| */ |
| if(bsrc->alpha == &ones) |
| return 0; |
| |
| /* |
| * otherwise, alphas are in the same place. |
| */ |
| return 1; |
| } |
| |
| static Buffer |
| alphacalc14(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op) |
| { |
| Buffer obdst; |
| int fd, sadelta; |
| int i, sa, ma, q; |
| u32int t, t1; |
| |
| obdst = bdst; |
| sadelta = bsrc.alpha == &ones ? 0 : bsrc.delta; |
| q = bsrc.delta == 4 && bdst.delta == 4 && chanmatch(&bdst, &bsrc); |
| |
| for(i=0; i<dx; i++){ |
| sa = *bsrc.alpha; |
| ma = *bmask.alpha; |
| fd = CALC11(sa, ma, t); |
| if(op == DoutS) |
| fd = 255-fd; |
| |
| if(grey){ |
| *bdst.grey = CALC11(fd, *bdst.grey, t); |
| bsrc.grey += bsrc.delta; |
| bdst.grey += bdst.delta; |
| }else{ |
| if(q){ |
| *bdst.rgba = CALC41(fd, *bdst.rgba, t, t1); |
| bsrc.rgba++; |
| bdst.rgba++; |
| bsrc.alpha += sadelta; |
| bmask.alpha += bmask.delta; |
| continue; |
| } |
| *bdst.red = CALC11(fd, *bdst.red, t); |
| *bdst.grn = CALC11(fd, *bdst.grn, t); |
| *bdst.blu = CALC11(fd, *bdst.blu, t); |
| bsrc.red += bsrc.delta; |
| bsrc.blu += bsrc.delta; |
| bsrc.grn += bsrc.delta; |
| bdst.red += bdst.delta; |
| bdst.blu += bdst.delta; |
| bdst.grn += bdst.delta; |
| } |
| if(bdst.alpha != &ones){ |
| *bdst.alpha = CALC11(fd, *bdst.alpha, t); |
| bdst.alpha += bdst.delta; |
| } |
| bmask.alpha += bmask.delta; |
| bsrc.alpha += sadelta; |
| } |
| return obdst; |
| } |
| |
| static Buffer |
| alphacalc2810(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op) |
| { |
| Buffer obdst; |
| int fs, sadelta; |
| int i, ma, da, q; |
| u32int t, t1; |
| |
| obdst = bdst; |
| sadelta = bsrc.alpha == &ones ? 0 : bsrc.delta; |
| q = bsrc.delta == 4 && bdst.delta == 4 && chanmatch(&bdst, &bsrc); |
| |
| for(i=0; i<dx; i++){ |
| ma = *bmask.alpha; |
| da = *bdst.alpha; |
| if(op == SoutD) |
| da = 255-da; |
| fs = ma; |
| if(op != S) |
| fs = CALC11(fs, da, t); |
| |
| if(grey){ |
| *bdst.grey = CALC11(fs, *bsrc.grey, t); |
| bsrc.grey += bsrc.delta; |
| bdst.grey += bdst.delta; |
| }else{ |
| if(q){ |
| *bdst.rgba = CALC41(fs, *bsrc.rgba, t, t1); |
| bsrc.rgba++; |
| bdst.rgba++; |
| bmask.alpha += bmask.delta; |
| bdst.alpha += bdst.delta; |
| continue; |
| } |
| *bdst.red = CALC11(fs, *bsrc.red, t); |
| *bdst.grn = CALC11(fs, *bsrc.grn, t); |
| *bdst.blu = CALC11(fs, *bsrc.blu, t); |
| bsrc.red += bsrc.delta; |
| bsrc.blu += bsrc.delta; |
| bsrc.grn += bsrc.delta; |
| bdst.red += bdst.delta; |
| bdst.blu += bdst.delta; |
| bdst.grn += bdst.delta; |
| } |
| if(bdst.alpha != &ones){ |
| *bdst.alpha = CALC11(fs, *bsrc.alpha, t); |
| bdst.alpha += bdst.delta; |
| } |
| bmask.alpha += bmask.delta; |
| bsrc.alpha += sadelta; |
| } |
| return obdst; |
| } |
| |
| static Buffer |
| alphacalc3679(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op) |
| { |
| Buffer obdst; |
| int fs, fd, sadelta; |
| int i, sa, ma, da, q; |
| u32int t, t1; |
| |
| obdst = bdst; |
| sadelta = bsrc.alpha == &ones ? 0 : bsrc.delta; |
| q = bsrc.delta == 4 && bdst.delta == 4 && chanmatch(&bdst, &bsrc); |
| |
| for(i=0; i<dx; i++){ |
| sa = *bsrc.alpha; |
| ma = *bmask.alpha; |
| da = *bdst.alpha; |
| if(op == SatopD) |
| fs = CALC11(ma, da, t); |
| else |
| fs = CALC11(ma, 255-da, t); |
| if(op == DoverS) |
| fd = 255; |
| else{ |
| fd = CALC11(sa, ma, t); |
| if(op != DatopS) |
| fd = 255-fd; |
| } |
| |
| if(grey){ |
| *bdst.grey = CALC12(fs, *bsrc.grey, fd, *bdst.grey, t); |
| bsrc.grey += bsrc.delta; |
| bdst.grey += bdst.delta; |
| }else{ |
| if(q){ |
| *bdst.rgba = CALC42(fs, *bsrc.rgba, fd, *bdst.rgba, t, t1); |
| bsrc.rgba++; |
| bdst.rgba++; |
| bsrc.alpha += sadelta; |
| bmask.alpha += bmask.delta; |
| bdst.alpha += bdst.delta; |
| continue; |
| } |
| *bdst.red = CALC12(fs, *bsrc.red, fd, *bdst.red, t); |
| *bdst.grn = CALC12(fs, *bsrc.grn, fd, *bdst.grn, t); |
| *bdst.blu = CALC12(fs, *bsrc.blu, fd, *bdst.blu, t); |
| bsrc.red += bsrc.delta; |
| bsrc.blu += bsrc.delta; |
| bsrc.grn += bsrc.delta; |
| bdst.red += bdst.delta; |
| bdst.blu += bdst.delta; |
| bdst.grn += bdst.delta; |
| } |
| if(bdst.alpha != &ones){ |
| *bdst.alpha = CALC12(fs, sa, fd, da, t); |
| bdst.alpha += bdst.delta; |
| } |
| bmask.alpha += bmask.delta; |
| bsrc.alpha += sadelta; |
| } |
| return obdst; |
| } |
| |
| static Buffer |
| alphacalc5(Buffer bdst, Buffer b1, Buffer b2, int dx, int grey, int op) |
| { |
| USED(dx); |
| USED(grey); |
| USED(op); |
| return bdst; |
| } |
| |
| static Buffer |
| alphacalc11(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op) |
| { |
| Buffer obdst; |
| int fd, sadelta; |
| int i, sa, ma, q; |
| u32int t, t1; |
| |
| USED(op); |
| obdst = bdst; |
| sadelta = bsrc.alpha == &ones ? 0 : bsrc.delta; |
| q = bsrc.delta == 4 && bdst.delta == 4 && chanmatch(&bdst, &bsrc); |
| |
| for(i=0; i<dx; i++){ |
| sa = *bsrc.alpha; |
| ma = *bmask.alpha; |
| fd = 255-CALC11(sa, ma, t); |
| |
| if(grey){ |
| *bdst.grey = CALC12(ma, *bsrc.grey, fd, *bdst.grey, t); |
| bsrc.grey += bsrc.delta; |
| bdst.grey += bdst.delta; |
| }else{ |
| if(q){ |
| *bdst.rgba = CALC42(ma, *bsrc.rgba, fd, *bdst.rgba, t, t1); |
| bsrc.rgba++; |
| bdst.rgba++; |
| bsrc.alpha += sadelta; |
| bmask.alpha += bmask.delta; |
| continue; |
| } |
| *bdst.red = CALC12(ma, *bsrc.red, fd, *bdst.red, t); |
| *bdst.grn = CALC12(ma, *bsrc.grn, fd, *bdst.grn, t); |
| *bdst.blu = CALC12(ma, *bsrc.blu, fd, *bdst.blu, t); |
| bsrc.red += bsrc.delta; |
| bsrc.blu += bsrc.delta; |
| bsrc.grn += bsrc.delta; |
| bdst.red += bdst.delta; |
| bdst.blu += bdst.delta; |
| bdst.grn += bdst.delta; |
| } |
| if(bdst.alpha != &ones){ |
| *bdst.alpha = CALC12(ma, sa, fd, *bdst.alpha, t); |
| bdst.alpha += bdst.delta; |
| } |
| bmask.alpha += bmask.delta; |
| bsrc.alpha += sadelta; |
| } |
| return obdst; |
| } |
| |
| /* |
| not used yet |
| source and mask alpha 1 |
| static Buffer |
| alphacalcS0(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op) |
| { |
| Buffer obdst; |
| int i; |
| |
| USED(op); |
| obdst = bdst; |
| if(bsrc.delta == bdst.delta){ |
| memmove(bdst.rgba, bsrc.rgba, dx*bdst.delta); |
| return obdst; |
| } |
| for(i=0; i<dx; i++){ |
| if(grey){ |
| *bdst.grey = *bsrc.grey; |
| bsrc.grey += bsrc.delta; |
| bdst.grey += bdst.delta; |
| }else{ |
| *bdst.red = *bsrc.red; |
| *bdst.grn = *bsrc.grn; |
| *bdst.blu = *bsrc.blu; |
| bsrc.red += bsrc.delta; |
| bsrc.blu += bsrc.delta; |
| bsrc.grn += bsrc.delta; |
| bdst.red += bdst.delta; |
| bdst.blu += bdst.delta; |
| bdst.grn += bdst.delta; |
| } |
| if(bdst.alpha != &ones){ |
| *bdst.alpha = 255; |
| bdst.alpha += bdst.delta; |
| } |
| } |
| return obdst; |
| } |
| */ |
| |
| /* source alpha 1 */ |
| static Buffer |
| alphacalcS(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op) |
| { |
| Buffer obdst; |
| int fd; |
| int i, ma; |
| u32int t; |
| |
| USED(op); |
| obdst = bdst; |
| |
| for(i=0; i<dx; i++){ |
| ma = *bmask.alpha; |
| fd = 255-ma; |
| |
| if(grey){ |
| *bdst.grey = CALC12(ma, *bsrc.grey, fd, *bdst.grey, t); |
| bsrc.grey += bsrc.delta; |
| bdst.grey += bdst.delta; |
| }else{ |
| *bdst.red = CALC12(ma, *bsrc.red, fd, *bdst.red, t); |
| *bdst.grn = CALC12(ma, *bsrc.grn, fd, *bdst.grn, t); |
| *bdst.blu = CALC12(ma, *bsrc.blu, fd, *bdst.blu, t); |
| bsrc.red += bsrc.delta; |
| bsrc.blu += bsrc.delta; |
| bsrc.grn += bsrc.delta; |
| bdst.red += bdst.delta; |
| bdst.blu += bdst.delta; |
| bdst.grn += bdst.delta; |
| } |
| if(bdst.alpha != &ones){ |
| *bdst.alpha = ma+CALC11(fd, *bdst.alpha, t); |
| bdst.alpha += bdst.delta; |
| } |
| bmask.alpha += bmask.delta; |
| } |
| return obdst; |
| } |
| |
| static Buffer |
| boolcalc14(Buffer bdst, Buffer b1, Buffer bmask, int dx, int grey, int op) |
| { |
| Buffer obdst; |
| int i, ma, zero; |
| |
| obdst = bdst; |
| |
| for(i=0; i<dx; i++){ |
| ma = *bmask.alpha; |
| zero = ma ? op == DoutS : op == DinS; |
| |
| if(grey){ |
| if(zero) |
| *bdst.grey = 0; |
| bdst.grey += bdst.delta; |
| }else{ |
| if(zero) |
| *bdst.red = *bdst.grn = *bdst.blu = 0; |
| bdst.red += bdst.delta; |
| bdst.blu += bdst.delta; |
| bdst.grn += bdst.delta; |
| } |
| bmask.alpha += bmask.delta; |
| if(bdst.alpha != &ones){ |
| if(zero) |
| *bdst.alpha = 0; |
| bdst.alpha += bdst.delta; |
| } |
| } |
| return obdst; |
| } |
| |
| static Buffer |
| boolcalc236789(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op) |
| { |
| Buffer obdst; |
| int fs, fd; |
| int i, ma, da, zero; |
| u32int t; |
| |
| obdst = bdst; |
| zero = !(op&1); |
| |
| for(i=0; i<dx; i++){ |
| ma = *bmask.alpha; |
| da = *bdst.alpha; |
| fs = da; |
| if(op&2) |
| fs = 255-da; |
| fd = 0; |
| if(op&4) |
| fd = 255; |
| |
| if(grey){ |
| if(ma) |
| *bdst.grey = CALC12(fs, *bsrc.grey, fd, *bdst.grey, t); |
| else if(zero) |
| *bdst.grey = 0; |
| bsrc.grey += bsrc.delta; |
| bdst.grey += bdst.delta; |
| }else{ |
| if(ma){ |
| *bdst.red = CALC12(fs, *bsrc.red, fd, *bdst.red, t); |
| *bdst.grn = CALC12(fs, *bsrc.grn, fd, *bdst.grn, t); |
| *bdst.blu = CALC12(fs, *bsrc.blu, fd, *bdst.blu, t); |
| } |
| else if(zero) |
| *bdst.red = *bdst.grn = *bdst.blu = 0; |
| bsrc.red += bsrc.delta; |
| bsrc.blu += bsrc.delta; |
| bsrc.grn += bsrc.delta; |
| bdst.red += bdst.delta; |
| bdst.blu += bdst.delta; |
| bdst.grn += bdst.delta; |
| } |
| bmask.alpha += bmask.delta; |
| if(bdst.alpha != &ones){ |
| if(ma) |
| *bdst.alpha = fs+CALC11(fd, da, t); |
| else if(zero) |
| *bdst.alpha = 0; |
| bdst.alpha += bdst.delta; |
| } |
| } |
| return obdst; |
| } |
| |
| static Buffer |
| boolcalc1011(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int grey, int op) |
| { |
| Buffer obdst; |
| int i, ma, zero; |
| |
| obdst = bdst; |
| zero = !(op&1); |
| |
| for(i=0; i<dx; i++){ |
| ma = *bmask.alpha; |
| |
| if(grey){ |
| if(ma) |
| *bdst.grey = *bsrc.grey; |
| else if(zero) |
| *bdst.grey = 0; |
| bsrc.grey += bsrc.delta; |
| bdst.grey += bdst.delta; |
| }else{ |
| if(ma){ |
| *bdst.red = *bsrc.red; |
| *bdst.grn = *bsrc.grn; |
| *bdst.blu = *bsrc.blu; |
| } |
| else if(zero) |
| *bdst.red = *bdst.grn = *bdst.blu = 0; |
| bsrc.red += bsrc.delta; |
| bsrc.blu += bsrc.delta; |
| bsrc.grn += bsrc.delta; |
| bdst.red += bdst.delta; |
| bdst.blu += bdst.delta; |
| bdst.grn += bdst.delta; |
| } |
| bmask.alpha += bmask.delta; |
| if(bdst.alpha != &ones){ |
| if(ma) |
| *bdst.alpha = 255; |
| else if(zero) |
| *bdst.alpha = 0; |
| bdst.alpha += bdst.delta; |
| } |
| } |
| return obdst; |
| } |
| /* |
| * Replicated cached scan line read. Call the function listed in the Param, |
| * but cache the result so that for replicated images we only do the work once. |
| */ |
| static Buffer |
| replread(Param *p, uchar *s, int y) |
| { |
| Buffer *b; |
| |
| USED(s); |
| b = &p->bcache[y]; |
| if((p->bfilled & (1<<y)) == 0){ |
| p->bfilled |= 1<<y; |
| *b = p->replcall(p, p->bufbase+y*p->bufdelta, y); |
| } |
| return *b; |
| } |
| |
| /* |
| * Alpha reading function that simply relabels the grey pointer. |
| */ |
| static Buffer |
| greymaskread(Param *p, uchar *buf, int y) |
| { |
| Buffer b; |
| |
| b = p->greymaskcall(p, buf, y); |
| b.alpha = b.grey; |
| return b; |
| } |
| |
| #define DBG if(0) |
| static Buffer |
| readnbit(Param *p, uchar *buf, int y) |
| { |
| Buffer b; |
| Memimage *img; |
| uchar *repl, *r, *w, *ow, bits; |
| int i, n, sh, depth, x, dx, npack, nbits; |
| |
| memset(&b, 0, sizeof b); |
| b.rgba = (u32int*)buf; |
| b.grey = w = buf; |
| b.red = b.blu = b.grn = w; |
| b.alpha = &ones; |
| b.delta = 1; |
| |
| dx = p->dx; |
| img = p->img; |
| depth = img->depth; |
| repl = &replbit[depth][0]; |
| npack = 8/depth; |
| sh = 8-depth; |
| |
| /* copy from p->r.min.x until end of repl rectangle */ |
| x = p->r.min.x; |
| n = dx; |
| if(n > p->img->r.max.x - x) |
| n = p->img->r.max.x - x; |
| |
| r = p->bytermin + y*p->bwidth; |
| DBG print("readnbit dx %d %p=%p+%d*%d, *r=%d fetch %d ", dx, r, p->bytermin, y, p->bwidth, *r, n); |
| bits = *r++; |
| nbits = 8; |
| if(i=x&(npack-1)){ |
| DBG print("throwaway %d...", i); |
| bits <<= depth*i; |
| nbits -= depth*i; |
| } |
| for(i=0; i<n; i++){ |
| if(nbits == 0){ |
| DBG print("(%.2ux)...", *r); |
| bits = *r++; |
| nbits = 8; |
| } |
| *w++ = repl[bits>>sh]; |
| DBG print("bit %x...", repl[bits>>sh]); |
| bits <<= depth; |
| nbits -= depth; |
| } |
| dx -= n; |
| if(dx == 0) |
| return b; |
| |
| assert(x+i == p->img->r.max.x); |
| |
| /* copy from beginning of repl rectangle until where we were before. */ |
| x = p->img->r.min.x; |
| n = dx; |
| if(n > p->r.min.x - x) |
| n = p->r.min.x - x; |
| |
| r = p->bytey0s + y*p->bwidth; |
| DBG print("x=%d r=%p...", x, r); |
| bits = *r++; |
| nbits = 8; |
| if(i=x&(npack-1)){ |
| bits <<= depth*i; |
| nbits -= depth*i; |
| } |
| DBG print("nbits=%d...", nbits); |
| for(i=0; i<n; i++){ |
| if(nbits == 0){ |
| bits = *r++; |
| nbits = 8; |
| } |
| *w++ = repl[bits>>sh]; |
| DBG print("bit %x...", repl[bits>>sh]); |
| bits <<= depth; |
| nbits -= depth; |
| DBG print("bits %x nbits %d...", bits, nbits); |
| } |
| dx -= n; |
| if(dx == 0) |
| return b; |
| |
| assert(dx > 0); |
| /* now we have exactly one full scan line: just replicate the buffer itself until we are done */ |
| ow = buf; |
| while(dx--) |
| *w++ = *ow++; |
| |
| return b; |
| } |
| #undef DBG |
| |
| #define DBG if(0) |
| static void |
| writenbit(Param *p, uchar *w, Buffer src) |
| { |
| uchar *r; |
| u32int bits; |
| int i, sh, depth, npack, nbits, x, ex; |
| |
| assert(src.grey != nil && src.delta == 1); |
| |
| x = p->r.min.x; |
| ex = x+p->dx; |
| depth = p->img->depth; |
| npack = 8/depth; |
| |
| i=x&(npack-1); |
| bits = i ? (*w >> (8-depth*i)) : 0; |
| nbits = depth*i; |
| sh = 8-depth; |
| r = src.grey; |
| |
| for(; x<ex; x++){ |
| bits <<= depth; |
| DBG print(" %x", *r); |
| bits |= (*r++ >> sh); |
| nbits += depth; |
| if(nbits == 8){ |
| *w++ = bits; |
| nbits = 0; |
| } |
| } |
| |
| if(nbits){ |
| sh = 8-nbits; |
| bits <<= sh; |
| bits |= *w & ((1<<sh)-1); |
| *w = bits; |
| } |
| DBG print("\n"); |
| return; |
| } |
| #undef DBG |
| |
| static Buffer |
| readcmap(Param *p, uchar *buf, int y) |
| { |
| Buffer b; |
| int a, convgrey, copyalpha, dx, i, m; |
| uchar *q, *cmap, *begin, *end, *r, *w; |
| |
| memset(&b, 0, sizeof b); |
| begin = p->bytey0s + y*p->bwidth; |
| r = p->bytermin + y*p->bwidth; |
| end = p->bytey0e + y*p->bwidth; |
| cmap = p->img->cmap->cmap2rgb; |
| convgrey = p->convgrey; |
| copyalpha = (p->img->flags&Falpha) ? 1 : 0; |
| |
| w = buf; |
| dx = p->dx; |
| if(copyalpha){ |
| b.alpha = buf++; |
| a = p->img->shift[CAlpha]/8; |
| m = p->img->shift[CMap]/8; |
| for(i=0; i<dx; i++){ |
| *w++ = r[a]; |
| q = cmap+r[m]*3; |
| r += 2; |
| if(r == end) |
| r = begin; |
| if(convgrey){ |
| *w++ = RGB2K(q[0], q[1], q[2]); |
| }else{ |
| *w++ = q[2]; /* blue */ |
| *w++ = q[1]; /* green */ |
| *w++ = q[0]; /* red */ |
| } |
| } |
| }else{ |
| b.alpha = &ones; |
| for(i=0; i<dx; i++){ |
| q = cmap+*r++*3; |
| if(r == end) |
| r = begin; |
| if(convgrey){ |
| *w++ = RGB2K(q[0], q[1], q[2]); |
| }else{ |
| *w++ = q[2]; /* blue */ |
| *w++ = q[1]; /* green */ |
| *w++ = q[0]; /* red */ |
| } |
| } |
| } |
| |
| b.rgba = (u32int*)(buf-copyalpha); |
| |
| if(convgrey){ |
| b.grey = buf; |
| b.red = b.blu = b.grn = buf; |
| b.delta = 1+copyalpha; |
| }else{ |
| b.blu = buf; |
| b.grn = buf+1; |
| b.red = buf+2; |
| b.grey = nil; |
| b.delta = 3+copyalpha; |
| } |
| return b; |
| } |
| |
| static void |
| writecmap(Param *p, uchar *w, Buffer src) |
| { |
| uchar *cmap, *red, *grn, *blu; |
| int i, dx, delta; |
| |
| cmap = p->img->cmap->rgb2cmap; |
| |
| delta = src.delta; |
| red= src.red; |
| grn = src.grn; |
| blu = src.blu; |
| |
| dx = p->dx; |
| for(i=0; i<dx; i++, red+=delta, grn+=delta, blu+=delta) |
| *w++ = cmap[(*red>>4)*256+(*grn>>4)*16+(*blu>>4)]; |
| } |
| |
| #define DBG if(drawdebug) |
| static Buffer |
| readbyte(Param *p, uchar *buf, int y) |
| { |
| Buffer b; |
| Memimage *img; |
| int dx, isgrey, convgrey, alphaonly, copyalpha, i, nb; |
| uchar *begin, *end, *r, *w, *rrepl, *grepl, *brepl, *arepl, *krepl; |
| uchar ured, ugrn, ublu; |
| u32int u; |
| |
| img = p->img; |
| begin = p->bytey0s + y*p->bwidth; |
| r = p->bytermin + y*p->bwidth; |
| end = p->bytey0e + y*p->bwidth; |
| |
| w = buf; |
| dx = p->dx; |
| nb = img->depth/8; |
| |
| convgrey = p->convgrey; /* convert rgb to grey */ |
| isgrey = img->flags&Fgrey; |
| alphaonly = p->alphaonly; |
| copyalpha = (img->flags&Falpha) ? 1 : 0; |
| |
| /* if we can, avoid processing everything */ |
| if(!(img->flags&Frepl) && !convgrey && (img->flags&Fbytes)){ |
| memset(&b, 0, sizeof b); |
| if(p->needbuf){ |
| memmove(buf, r, dx*nb); |
| r = buf; |
| } |
| b.rgba = (u32int*)r; |
| if(copyalpha) |
| b.alpha = r+img->shift[CAlpha]/8; |
| else |
| b.alpha = &ones; |
| if(isgrey){ |
| b.grey = r+img->shift[CGrey]/8; |
| b.red = b.grn = b.blu = b.grey; |
| }else{ |
| b.red = r+img->shift[CRed]/8; |
| b.grn = r+img->shift[CGreen]/8; |
| b.blu = r+img->shift[CBlue]/8; |
| } |
| b.delta = nb; |
| return b; |
| } |
| |
| rrepl = replbit[img->nbits[CRed]]; |
| grepl = replbit[img->nbits[CGreen]]; |
| brepl = replbit[img->nbits[CBlue]]; |
| arepl = replbit[img->nbits[CAlpha]]; |
| krepl = replbit[img->nbits[CGrey]]; |
| |
| for(i=0; i<dx; i++){ |
| u = r[0] | (r[1]<<8) | (r[2]<<16) | (r[3]<<24); |
| if(copyalpha) |
| *w++ = arepl[(u>>img->shift[CAlpha]) & img->mask[CAlpha]]; |
| |
| if(isgrey) |
| *w++ = krepl[(u >> img->shift[CGrey]) & img->mask[CGrey]]; |
| else if(!alphaonly){ |
| ured = rrepl[(u >> img->shift[CRed]) & img->mask[CRed]]; |
| ugrn = grepl[(u >> img->shift[CGreen]) & img->mask[CGreen]]; |
| ublu = brepl[(u >> img->shift[CBlue]) & img->mask[CBlue]]; |
| if(convgrey){ |
| *w++ = RGB2K(ured, ugrn, ublu); |
| }else{ |
| *w++ = brepl[(u >> img->shift[CBlue]) & img->mask[CBlue]]; |
| *w++ = grepl[(u >> img->shift[CGreen]) & img->mask[CGreen]]; |
| *w++ = rrepl[(u >> img->shift[CRed]) & img->mask[CRed]]; |
| } |
| } |
| r += nb; |
| if(r == end) |
| r = begin; |
| } |
| |
| b.alpha = copyalpha ? buf : &ones; |
| b.rgba = (u32int*)buf; |
| if(alphaonly){ |
| b.red = b.grn = b.blu = b.grey = nil; |
| if(!copyalpha) |
| b.rgba = nil; |
| b.delta = 1; |
| }else if(isgrey || convgrey){ |
| b.grey = buf+copyalpha; |
| b.red = b.grn = b.blu = buf+copyalpha; |
| b.delta = copyalpha+1; |
| }else{ |
| b.blu = buf+copyalpha; |
| b.grn = buf+copyalpha+1; |
| b.grey = nil; |
| b.red = buf+copyalpha+2; |
| b.delta = copyalpha+3; |
| } |
| return b; |
| } |
| #undef DBG |
| |
| #define DBG if(drawdebug) |
| static void |
| writebyte(Param *p, uchar *w, Buffer src) |
| { |
| Memimage *img; |
| int i, isalpha, isgrey, nb, delta, dx, adelta; |
| uchar ff, *red, *grn, *blu, *grey, *alpha; |
| u32int u, mask; |
| |
| img = p->img; |
| |
| red = src.red; |
| grn = src.grn; |
| blu = src.blu; |
| alpha = src.alpha; |
| delta = src.delta; |
| grey = src.grey; |
| dx = p->dx; |
| |
| nb = img->depth/8; |
| mask = (nb==4) ? 0 : ~((1<<img->depth)-1); |
| |
| isalpha = img->flags&Falpha; |
| isgrey = img->flags&Fgrey; |
| adelta = src.delta; |
| |
| if(isalpha && (alpha == nil || alpha == &ones)){ |
| ff = 0xFF; |
| alpha = &ff; |
| adelta = 0; |
| } |
| |
| for(i=0; i<dx; i++){ |
| u = w[0] | (w[1]<<8) | (w[2]<<16) | (w[3]<<24); |
| DBG print("u %.8lux...", u); |
| u &= mask; |
| DBG print("&mask %.8lux...", u); |
| if(isgrey){ |
| u |= ((*grey >> (8-img->nbits[CGrey])) & img->mask[CGrey]) << img->shift[CGrey]; |
| DBG print("|grey %.8lux...", u); |
| grey += delta; |
| }else{ |
| u |= ((*red >> (8-img->nbits[CRed])) & img->mask[CRed]) << img->shift[CRed]; |
| u |= ((*grn >> (8-img->nbits[CGreen])) & img->mask[CGreen]) << img->shift[CGreen]; |
| u |= ((*blu >> (8-img->nbits[CBlue])) & img->mask[CBlue]) << img->shift[CBlue]; |
| red += delta; |
| grn += delta; |
| blu += delta; |
| DBG print("|rgb %.8lux...", u); |
| } |
| |
| if(isalpha){ |
| u |= ((*alpha >> (8-img->nbits[CAlpha])) & img->mask[CAlpha]) << img->shift[CAlpha]; |
| alpha += adelta; |
| DBG print("|alpha %.8lux...", u); |
| } |
| |
| w[0] = u; |
| w[1] = u>>8; |
| w[2] = u>>16; |
| w[3] = u>>24; |
| DBG print("write back %.8lux...", u); |
| w += nb; |
| } |
| } |
| #undef DBG |
| |
| static Readfn* |
| readfn(Memimage *img) |
| { |
| if(img->depth < 8) |
| return readnbit; |
| if(img->nbits[CMap] == 8) |
| return readcmap; |
| return readbyte; |
| } |
| |
| static Readfn* |
| readalphafn(Memimage *m) |
| { |
| USED(m); |
| return readbyte; |
| } |
| |
| static Writefn* |
| writefn(Memimage *img) |
| { |
| if(img->depth < 8) |
| return writenbit; |
| if(img->chan == CMAP8) |
| return writecmap; |
| return writebyte; |
| } |
| |
| static void |
| nullwrite(Param *p, uchar *s, Buffer b) |
| { |
| USED(p); |
| USED(s); |
| } |
| |
| static Buffer |
| readptr(Param *p, uchar *s, int y) |
| { |
| Buffer b; |
| uchar *q; |
| |
| USED(s); |
| memset(&b, 0, sizeof b); |
| q = p->bytermin + y*p->bwidth; |
| b.red = q; /* ptr to data */ |
| b.grn = b.blu = b.grey = b.alpha = nil; |
| b.rgba = (u32int*)q; |
| b.delta = p->img->depth/8; |
| return b; |
| } |
| |
| static Buffer |
| boolmemmove(Buffer bdst, Buffer bsrc, Buffer b1, int dx, int i, int o) |
| { |
| USED(i); |
| USED(o); |
| memmove(bdst.red, bsrc.red, dx*bdst.delta); |
| return bdst; |
| } |
| |
| static Buffer |
| boolcopy8(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int i, int o) |
| { |
| uchar *m, *r, *w, *ew; |
| |
| USED(i); |
| USED(o); |
| m = bmask.grey; |
| w = bdst.red; |
| r = bsrc.red; |
| ew = w+dx; |
| for(; w < ew; w++,r++) |
| if(*m++) |
| *w = *r; |
| return bdst; /* not used */ |
| } |
| |
| static Buffer |
| boolcopy16(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int i, int o) |
| { |
| uchar *m; |
| ushort *r, *w, *ew; |
| |
| USED(i); |
| USED(o); |
| m = bmask.grey; |
| w = (ushort*)bdst.red; |
| r = (ushort*)bsrc.red; |
| ew = w+dx; |
| for(; w < ew; w++,r++) |
| if(*m++) |
| *w = *r; |
| return bdst; /* not used */ |
| } |
| |
| static Buffer |
| boolcopy24(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int i, int o) |
| { |
| uchar *m; |
| uchar *r, *w, *ew; |
| |
| USED(i); |
| USED(o); |
| m = bmask.grey; |
| w = bdst.red; |
| r = bsrc.red; |
| ew = w+dx*3; |
| while(w < ew){ |
| if(*m++){ |
| *w++ = *r++; |
| *w++ = *r++; |
| *w++ = *r++; |
| }else{ |
| w += 3; |
| r += 3; |
| } |
| } |
| return bdst; /* not used */ |
| } |
| |
| static Buffer |
| boolcopy32(Buffer bdst, Buffer bsrc, Buffer bmask, int dx, int i, int o) |
| { |
| uchar *m; |
| u32int *r, *w, *ew; |
| |
| USED(i); |
| USED(o); |
| m = bmask.grey; |
| w = (u32int*)bdst.red; |
| r = (u32int*)bsrc.red; |
| ew = w+dx; |
| for(; w < ew; w++,r++) |
| if(*m++) |
| *w = *r; |
| return bdst; /* not used */ |
| } |
| |
| static Buffer |
| genconv(Param *p, uchar *buf, int y) |
| { |
| Buffer b; |
| int nb; |
| uchar *r, *w, *ew; |
| |
| /* read from source into RGB format in convbuf */ |
| b = p->convreadcall(p, p->convbuf, y); |
| |
| /* write RGB format into dst format in buf */ |
| p->convwritecall(p->convdpar, buf, b); |
| |
| if(p->convdx){ |
| nb = p->convdpar->img->depth/8; |
| r = buf; |
| w = buf+nb*p->dx; |
| ew = buf+nb*p->convdx; |
| while(w<ew) |
| *w++ = *r++; |
| } |
| |
| b.red = buf; |
| b.blu = b.grn = b.grey = b.alpha = nil; |
| b.rgba = (u32int*)buf; |
| b.delta = 0; |
| |
| return b; |
| } |
| |
| static Readfn* |
| convfn(Memimage *dst, Param *dpar, Memimage *src, Param *spar) |
| { |
| if(dst->chan == src->chan && !(src->flags&Frepl)){ |
| /*if(drawdebug) iprint("readptr..."); */ |
| return readptr; |
| } |
| |
| if(dst->chan==CMAP8 && (src->chan==GREY1||src->chan==GREY2||src->chan==GREY4)){ |
| /* cheat because we know the replicated value is exactly the color map entry. */ |
| /*if(drawdebug) iprint("Readnbit..."); */ |
| return readnbit; |
| } |
| |
| spar->convreadcall = readfn(src); |
| spar->convwritecall = writefn(dst); |
| spar->convdpar = dpar; |
| |
| /* allocate a conversion buffer */ |
| spar->convbufoff = ndrawbuf; |
| ndrawbuf += spar->dx*4; |
| |
| if(spar->dx > Dx(spar->img->r)){ |
| spar->convdx = spar->dx; |
| spar->dx = Dx(spar->img->r); |
| } |
| |
| /*if(drawdebug) iprint("genconv..."); */ |
| return genconv; |
| } |
| |
| /* |
| * Do NOT call this directly. pixelbits is a wrapper |
| * around this that fetches the bits from the X server |
| * when necessary. |
| */ |
| u32int |
| _pixelbits(Memimage *i, Point pt) |
| { |
| uchar *p; |
| u32int val; |
| int off, bpp, npack; |
| |
| val = 0; |
| p = byteaddr(i, pt); |
| switch(bpp=i->depth){ |
| case 1: |
| case 2: |
| case 4: |
| npack = 8/bpp; |
| off = pt.x%npack; |
| val = p[0] >> bpp*(npack-1-off); |
| val &= (1<<bpp)-1; |
| break; |
| case 8: |
| val = p[0]; |
| break; |
| case 16: |
| val = p[0]|(p[1]<<8); |
| break; |
| case 24: |
| val = p[0]|(p[1]<<8)|(p[2]<<16); |
| break; |
| case 32: |
| val = p[0]|(p[1]<<8)|(p[2]<<16)|(p[3]<<24); |
| break; |
| } |
| while(bpp<32){ |
| val |= val<<bpp; |
| bpp *= 2; |
| } |
| return val; |
| } |
| |
| static Calcfn* |
| boolcopyfn(Memimage *img, Memimage *mask) |
| { |
| if(mask->flags&Frepl && Dx(mask->r)==1 && Dy(mask->r)==1 && pixelbits(mask, mask->r.min)==~0) |
| return boolmemmove; |
| |
| switch(img->depth){ |
| case 8: |
| return boolcopy8; |
| case 16: |
| return boolcopy16; |
| case 24: |
| return boolcopy24; |
| case 32: |
| return boolcopy32; |
| default: |
| assert(0 /* boolcopyfn */); |
| } |
| return 0; |
| } |
| |
| /* |
| * Optimized draw for filling and scrolling; uses memset and memmove. |
| */ |
| static void |
| memsets(void *vp, ushort val, int n) |
| { |
| ushort *p, *ep; |
| |
| p = vp; |
| ep = p+n; |
| while(p<ep) |
| *p++ = val; |
| } |
| |
| static void |
| memsetl(void *vp, u32int val, int n) |
| { |
| u32int *p, *ep; |
| |
| p = vp; |
| ep = p+n; |
| while(p<ep) |
| *p++ = val; |
| } |
| |
| static void |
| memset24(void *vp, u32int val, int n) |
| { |
| uchar *p, *ep; |
| uchar a,b,c; |
| |
| p = vp; |
| ep = p+3*n; |
| a = val; |
| b = val>>8; |
| c = val>>16; |
| while(p<ep){ |
| *p++ = a; |
| *p++ = b; |
| *p++ = c; |
| } |
| } |
| |
| u32int |
| _imgtorgba(Memimage *img, u32int val) |
| { |
| uchar r, g, b, a; |
| int nb, ov, v; |
| u32int chan; |
| uchar *p; |
| |
| a = 0xFF; |
| r = g = b = 0xAA; /* garbage */ |
| for(chan=img->chan; chan; chan>>=8){ |
| nb = NBITS(chan); |
| ov = v = val&((1<<nb)-1); |
| val >>= nb; |
| |
| while(nb < 8){ |
| v |= v<<nb; |
| nb *= 2; |
| } |
| v >>= (nb-8); |
| |
| switch(TYPE(chan)){ |
| case CRed: |
| r = v; |
| break; |
| case CGreen: |
| g = v; |
| break; |
| case CBlue: |
| b = v; |
| break; |
| case CAlpha: |
| a = v; |
| break; |
| case CGrey: |
| r = g = b = v; |
| break; |
| case CMap: |
| p = img->cmap->cmap2rgb+3*ov; |
| r = *p++; |
| g = *p++; |
| b = *p; |
| break; |
| } |
| } |
| return (r<<24)|(g<<16)|(b<<8)|a; |
| } |
| |
| u32int |
| _rgbatoimg(Memimage *img, u32int rgba) |
| { |
| u32int chan; |
| int d, nb; |
| u32int v; |
| uchar *p, r, g, b, a, m; |
| |
| v = 0; |
| r = rgba>>24; |
| g = rgba>>16; |
| b = rgba>>8; |
| a = rgba; |
| d = 0; |
| for(chan=img->chan; chan; chan>>=8){ |
| nb = NBITS(chan); |
| switch(TYPE(chan)){ |
| case CRed: |
| v |= (r>>(8-nb))<<d; |
| break; |
| case CGreen: |
| v |= (g>>(8-nb))<<d; |
| break; |
| case CBlue: |
| v |= (b>>(8-nb))<<d; |
| break; |
| case CAlpha: |
| v |= (a>>(8-nb))<<d; |
| break; |
| case CMap: |
| p = img->cmap->rgb2cmap; |
| m = p[(r>>4)*256+(g>>4)*16+(b>>4)]; |
| v |= (m>>(8-nb))<<d; |
| break; |
| case CGrey: |
| m = RGB2K(r,g,b); |
| v |= (m>>(8-nb))<<d; |
| break; |
| } |
| d += nb; |
| } |
| /* print("rgba2img %.8lux = %.*lux\n", rgba, 2*d/8, v); */ |
| return v; |
| } |
| |
| #define DBG if(0) |
| static int |
| memoptdraw(Memdrawparam *par) |
| { |
| int m, y, dy, dx, op; |
| u32int v; |
| u16int u16; |
| Memimage *src; |
| Memimage *dst; |
| |
| dx = Dx(par->r); |
| dy = Dy(par->r); |
| src = par->src; |
| dst = par->dst; |
| op = par->op; |
| |
| DBG print("state %lux mval %lux dd %d\n", par->state, par->mval, dst->depth); |
| /* |
| * If we have an opaque mask and source is one opaque pixel we can convert to the |
| * destination format and just replicate with memset. |
| */ |
| m = Simplesrc|Simplemask|Fullmask; |
| if((par->state&m)==m && (par->srgba&0xFF) == 0xFF && (op ==S || op == SoverD)){ |
| uchar *dp, p[4]; |
| int d, dwid, ppb, np, nb; |
| uchar lm, rm; |
| |
| DBG print("memopt, dst %p, dst->data->bdata %p\n", dst, dst->data->bdata); |
| dwid = dst->width*sizeof(u32int); |
| dp = byteaddr(dst, par->r.min); |
| v = par->sdval; |
| DBG print("sdval %lud, depth %d\n", v, dst->depth); |
| switch(dst->depth){ |
| case 1: |
| case 2: |
| case 4: |
| for(d=dst->depth; d<8; d*=2) |
| v |= (v<<d); |
| ppb = 8/dst->depth; /* pixels per byte */ |
| m = ppb-1; |
| /* left edge */ |
| np = par->r.min.x&m; /* no. pixels unused on left side of word */ |
| dx -= (ppb-np); |
| nb = 8 - np * dst->depth; /* no. bits used on right side of word */ |
| lm = (1<<nb)-1; |
| DBG print("np %d x %d nb %d lm %ux ppb %d m %ux\n", np, par->r.min.x, nb, lm, ppb, m); |
| |
| /* right edge */ |
| np = par->r.max.x&m; /* no. pixels used on left side of word */ |
| dx -= np; |
| nb = 8 - np * dst->depth; /* no. bits unused on right side of word */ |
| rm = ~((1<<nb)-1); |
| DBG print("np %d x %d nb %d rm %ux ppb %d m %ux\n", np, par->r.max.x, nb, rm, ppb, m); |
| |
| DBG print("dx %d Dx %d\n", dx, Dx(par->r)); |
| /* lm, rm are masks that are 1 where we should touch the bits */ |
| if(dx < 0){ /* just one byte */ |
| lm &= rm; |
| for(y=0; y<dy; y++, dp+=dwid) |
| *dp ^= (v ^ *dp) & lm; |
| }else if(dx == 0){ /* no full bytes */ |
| if(lm) |
| dwid--; |
| |
| for(y=0; y<dy; y++, dp+=dwid){ |
| if(lm){ |
| DBG print("dp %p v %lux lm %ux (v ^ *dp) & lm %lux\n", dp, v, lm, (v^*dp)&lm); |
| *dp ^= (v ^ *dp) & lm; |
| dp++; |
| } |
| *dp ^= (v ^ *dp) & rm; |
| } |
| }else{ /* full bytes in middle */ |
| dx /= ppb; |
| if(lm) |
| dwid--; |
| dwid -= dx; |
| |
| for(y=0; y<dy; y++, dp+=dwid){ |
| if(lm){ |
| *dp ^= (v ^ *dp) & lm; |
| dp++; |
| } |
| memset(dp, v, dx); |
| dp += dx; |
| *dp ^= (v ^ *dp) & rm; |
| } |
| } |
| return 1; |
| case 8: |
| for(y=0; y<dy; y++, dp+=dwid) |
| memset(dp, v, dx); |
| return 1; |
| case 16: |
| p[0] = v; /* make little endian */ |
| p[1] = v>>8; |
| memmove(&u16, p, 2); |
| v = u16; |
| DBG print("dp=%p; dx=%d; for(y=0; y<%d; y++, dp+=%d)\nmemsets(dp, v, dx);\n", |
| dp, dx, dy, dwid); |
| for(y=0; y<dy; y++, dp+=dwid) |
| memsets(dp, v, dx); |
| return 1; |
| case 24: |
| for(y=0; y<dy; y++, dp+=dwid) |
| memset24(dp, v, dx); |
| return 1; |
| case 32: |
| p[0] = v; /* make little endian */ |
| p[1] = v>>8; |
| p[2] = v>>16; |
| p[3] = v>>24; |
| memmove(&v, p, 4); |
| for(y=0; y<dy; y++, dp+=dwid) |
| memsetl(dp, v, dx); |
| return 1; |
| default: |
| assert(0 /* bad dest depth in memoptdraw */); |
| } |
| } |
| |
| /* |
| * If no source alpha, an opaque mask, we can just copy the |
| * source onto the destination. If the channels are the same and |
| * the source is not replicated, memmove suffices. |
| */ |
| m = Simplemask|Fullmask; |
| if((par->state&(m|Replsrc))==m && src->depth >= 8 |
| && src->chan == dst->chan && !(src->flags&Falpha) && (op == S || op == SoverD)){ |
| uchar *sp, *dp; |
| long swid, dwid, nb; |
| int dir; |
| |
| if(src->data == dst->data && byteaddr(dst, par->r.min) > byteaddr(src, par->sr.min)) |
| dir = -1; |
| else |
| dir = 1; |
| |
| swid = src->width*sizeof(u32int); |
| dwid = dst->width*sizeof(u32int); |
| sp = byteaddr(src, par->sr.min); |
| dp = byteaddr(dst, par->r.min); |
| if(dir == -1){ |
| sp += (dy-1)*swid; |
| dp += (dy-1)*dwid; |
| swid = -swid; |
| dwid = -dwid; |
| } |
| nb = (dx*src->depth)/8; |
| for(y=0; y<dy; y++, sp+=swid, dp+=dwid) |
| memmove(dp, sp, nb); |
| return 1; |
| } |
| |
| /* |
| * If we have a 1-bit mask, 1-bit source, and 1-bit destination, and |
| * they're all bit aligned, we can just use bit operators. This happens |
| * when we're manipulating boolean masks, e.g. in the arc code. |
| */ |
| if((par->state&(Simplemask|Simplesrc|Replmask|Replsrc))==0 |
| && dst->chan==GREY1 && src->chan==GREY1 && par->mask->chan==GREY1 |
| && (par->r.min.x&7)==(par->sr.min.x&7) && (par->r.min.x&7)==(par->mr.min.x&7)){ |
| uchar *sp, *dp, *mp; |
| uchar lm, rm; |
| long swid, dwid, mwid; |
| int i, x, dir; |
| |
| sp = byteaddr(src, par->sr.min); |
| dp = byteaddr(dst, par->r.min); |
| mp = byteaddr(par->mask, par->mr.min); |
| swid = src->width*sizeof(u32int); |
| dwid = dst->width*sizeof(u32int); |
| mwid = par->mask->width*sizeof(u32int); |
| |
| if(src->data == dst->data && byteaddr(dst, par->r.min) > byteaddr(src, par->sr.min)){ |
| dir = -1; |
| }else |
| dir = 1; |
| |
| lm = 0xFF>>(par->r.min.x&7); |
| rm = 0xFF<<(8-(par->r.max.x&7)); |
| dx -= (8-(par->r.min.x&7)) + (par->r.max.x&7); |
| |
| if(dx < 0){ /* one byte wide */ |
| lm &= rm; |
| if(dir == -1){ |
| dp += dwid*(dy-1); |
| sp += swid*(dy-1); |
| mp += mwid*(dy-1); |
| dwid = -dwid; |
| swid = -swid; |
| mwid = -mwid; |
| } |
| for(y=0; y<dy; y++){ |
| *dp ^= (*dp ^ *sp) & *mp & lm; |
| dp += dwid; |
| sp += swid; |
| mp += mwid; |
| } |
| return 1; |
| } |
| |
| dx /= 8; |
| if(dir == 1){ |
| i = (lm!=0)+dx+(rm!=0); |
| mwid -= i; |
| swid -= i; |
| dwid -= i; |
| for(y=0; y<dy; y++, dp+=dwid, sp+=swid, mp+=mwid){ |
| if(lm){ |
| *dp ^= (*dp ^ *sp++) & *mp++ & lm; |
| dp++; |
| } |
| for(x=0; x<dx; x++){ |
| *dp ^= (*dp ^ *sp++) & *mp++; |
| dp++; |
| } |
| if(rm){ |
| *dp ^= (*dp ^ *sp++) & *mp++ & rm; |
| dp++; |
| } |
| } |
| return 1; |
| }else{ |
| /* dir == -1 */ |
| i = (lm!=0)+dx+(rm!=0); |
| dp += dwid*(dy-1)+i-1; |
| sp += swid*(dy-1)+i-1; |
| mp += mwid*(dy-1)+i-1; |
| dwid = -dwid+i; |
| swid = -swid+i; |
| mwid = -mwid+i; |
| for(y=0; y<dy; y++, dp+=dwid, sp+=swid, mp+=mwid){ |
| if(rm){ |
| *dp ^= (*dp ^ *sp--) & *mp-- & rm; |
| dp--; |
| } |
| for(x=0; x<dx; x++){ |
| *dp ^= (*dp ^ *sp--) & *mp--; |
| dp--; |
| } |
| if(lm){ |
| *dp ^= (*dp ^ *sp--) & *mp-- & lm; |
| dp--; |
| } |
| } |
| } |
| return 1; |
| } |
| return 0; |
| } |
| #undef DBG |
| |
| /* |
| * Boolean character drawing. |
| * Solid opaque color through a 1-bit greyscale mask. |
| */ |
| #define DBG if(0) |
| static int |
| chardraw(Memdrawparam *par) |
| { |
| u32int bits; |
| int i, ddepth, dy, dx, x, bx, ex, y, npack, bsh, depth, op; |
| u32int v, maskwid, dstwid; |
| uchar *wp, *rp, *q, *wc; |
| ushort *ws; |
| u32int *wl; |
| uchar sp[4]; |
| Rectangle r, mr; |
| Memimage *mask, *src, *dst; |
| union { |
| // black box to hide pointer conversions from gcc. |
| // we'll see how long this works. |
| uchar *u8; |
| u16int *u16; |
| u32int *u32; |
| } gcc_black_box; |
| |
| if(0) if(drawdebug) iprint("chardraw? mf %lux md %d sf %lux dxs %d dys %d dd %d ddat %p sdat %p\n", |
| par->mask->flags, par->mask->depth, par->src->flags, |
| Dx(par->src->r), Dy(par->src->r), par->dst->depth, par->dst->data, par->src->data); |
| |
| mask = par->mask; |
| src = par->src; |
| dst = par->dst; |
| r = par->r; |
| mr = par->mr; |
| op = par->op; |
| |
| if((par->state&(Replsrc|Simplesrc|Fullsrc|Replmask)) != (Replsrc|Simplesrc|Fullsrc) |
| || mask->depth != 1 || dst->depth<8 || dst->data==src->data |
| || op != SoverD) |
| return 0; |
| |
| /*if(drawdebug) iprint("chardraw..."); */ |
| |
| depth = mask->depth; |
| maskwid = mask->width*sizeof(u32int); |
| rp = byteaddr(mask, mr.min); |
| npack = 8/depth; |
| bsh = (mr.min.x % npack) * depth; |
| |
| wp = byteaddr(dst, r.min); |
| dstwid = dst->width*sizeof(u32int); |
| DBG print("bsh %d\n", bsh); |
| dy = Dy(r); |
| dx = Dx(r); |
| |
| ddepth = dst->depth; |
| |
| /* |
| * for loop counts from bsh to bsh+dx |
| * |
| * we want the bottom bits to be the amount |
| * to shift the pixels down, so for n≡0 (mod 8) we want |
| * bottom bits 7. for n≡1, 6, etc. |
| * the bits come from -n-1. |
| */ |
| |
| bx = -bsh-1; |
| ex = -bsh-1-dx; |
| SET(bits); |
| v = par->sdval; |
| |
| /* make little endian */ |
| sp[0] = v; |
| sp[1] = v>>8; |
| sp[2] = v>>16; |
| sp[3] = v>>24; |
| |
| /*print("sp %x %x %x %x\n", sp[0], sp[1], sp[2], sp[3]); */ |
| for(y=0; y<dy; y++, rp+=maskwid, wp+=dstwid){ |
| q = rp; |
| if(bsh) |
| bits = *q++; |
| switch(ddepth){ |
| case 8: |
| /*if(drawdebug) iprint("8loop..."); */ |
| wc = wp; |
| for(x=bx; x>ex; x--, wc++){ |
| i = x&7; |
| if(i == 8-1) |
| bits = *q++; |
| DBG print("bits %lux sh %d...", bits, i); |
| if((bits>>i)&1) |
| *wc = v; |
| } |
| break; |
| case 16: |
| gcc_black_box.u8 = wp; |
| ws = gcc_black_box.u16; |
| gcc_black_box.u8 = sp; |
| v = *gcc_black_box.u16; |
| for(x=bx; x>ex; x--, ws++){ |
| i = x&7; |
| if(i == 8-1) |
| bits = *q++; |
| DBG print("bits %lux sh %d...", bits, i); |
| if((bits>>i)&1) |
| *ws = v; |
| } |
| break; |
| case 24: |
| wc = wp; |
| for(x=bx; x>ex; x--, wc+=3){ |
| i = x&7; |
| if(i == 8-1) |
| bits = *q++; |
| DBG print("bits %lux sh %d...", bits, i); |
| if((bits>>i)&1){ |
| wc[0] = sp[0]; |
| wc[1] = sp[1]; |
| wc[2] = sp[2]; |
| } |
| } |
| break; |
| case 32: |
| gcc_black_box.u8 = wp; |
| wl = gcc_black_box.u32; |
| gcc_black_box.u8 = sp; |
| v = *gcc_black_box.u32; |
| for(x=bx; x>ex; x--, wl++){ |
| i = x&7; |
| if(i == 8-1) |
| bits = *q++; |
| DBG iprint("bits %lux sh %d...", bits, i); |
| if((bits>>i)&1) |
| *wl = v; |
| } |
| break; |
| } |
| } |
| |
| DBG print("\n"); |
| return 1; |
| } |
| #undef DBG |
| |
| |
| /* |
| * Fill entire byte with replicated (if necessary) copy of source pixel, |
| * assuming destination ldepth is >= source ldepth. |
| * |
| * This code is just plain wrong for >8bpp. |
| * |
| u32int |
| membyteval(Memimage *src) |
| { |
| int i, val, bpp; |
| uchar uc; |
| |
| unloadmemimage(src, src->r, &uc, 1); |
| bpp = src->depth; |
| uc <<= (src->r.min.x&(7/src->depth))*src->depth; |
| uc &= ~(0xFF>>bpp); |
| * pixel value is now in high part of byte. repeat throughout byte |
| val = uc; |
| for(i=bpp; i<8; i<<=1) |
| val |= val>>i; |
| return val; |
| } |
| * |
| */ |
| |
| void |
| _memfillcolor(Memimage *i, u32int val) |
| { |
| u32int bits; |
| int d, y; |
| uchar p[4]; |
| |
| if(val == DNofill) |
| return; |
| |
| bits = _rgbatoimg(i, val); |
| switch(i->depth){ |
| case 24: /* 24-bit images suck */ |
| for(y=i->r.min.y; y<i->r.max.y; y++) |
| memset24(byteaddr(i, Pt(i->r.min.x, y)), bits, Dx(i->r)); |
| break; |
| default: /* 1, 2, 4, 8, 16, 32 */ |
| for(d=i->depth; d<32; d*=2) |
| bits = (bits << d) | bits; |
| p[0] = bits; /* make little endian */ |
| p[1] = bits>>8; |
| p[2] = bits>>16; |
| p[3] = bits>>24; |
| memmove(&bits, p, 4); |
| memsetl(wordaddr(i, i->r.min), bits, i->width*Dy(i->r)); |
| break; |
| } |
| } |
| |