| /* Copyright (c) 2002-2006 Lucent Technologies; see LICENSE */ |
| #include <stdlib.h> |
| #include <math.h> |
| #include <ctype.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <errno.h> |
| #include "plan9.h" |
| #include "fmt.h" |
| #include "fmtdef.h" |
| |
| static ulong |
| umuldiv(ulong a, ulong b, ulong c) |
| { |
| double d; |
| |
| d = ((double)a * (double)b) / (double)c; |
| if(d >= 4294967295.) |
| d = 4294967295.; |
| return (ulong)d; |
| } |
| |
| /* |
| * This routine will convert to arbitrary precision |
| * floating point entirely in multi-precision fixed. |
| * The answer is the closest floating point number to |
| * the given decimal number. Exactly half way are |
| * rounded ala ieee rules. |
| * Method is to scale input decimal between .500 and .999... |
| * with external power of 2, then binary search for the |
| * closest mantissa to this decimal number. |
| * Nmant is is the required precision. (53 for ieee dp) |
| * Nbits is the max number of bits/word. (must be <= 28) |
| * Prec is calculated - the number of words of fixed mantissa. |
| */ |
| enum |
| { |
| Nbits = 28, /* bits safely represented in a ulong */ |
| Nmant = 53, /* bits of precision required */ |
| Prec = (Nmant+Nbits+1)/Nbits, /* words of Nbits each to represent mantissa */ |
| Sigbit = 1<<(Prec*Nbits-Nmant), /* first significant bit of Prec-th word */ |
| Ndig = 1500, |
| One = (ulong)(1<<Nbits), |
| Half = (ulong)(One>>1), |
| Maxe = 310, |
| |
| Fsign = 1<<0, /* found - */ |
| Fesign = 1<<1, /* found e- */ |
| Fdpoint = 1<<2, /* found . */ |
| |
| S0 = 0, /* _ _S0 +S1 #S2 .S3 */ |
| S1, /* _+ #S2 .S3 */ |
| S2, /* _+# #S2 .S4 eS5 */ |
| S3, /* _+. #S4 */ |
| S4, /* _+#.# #S4 eS5 */ |
| S5, /* _+#.#e +S6 #S7 */ |
| S6, /* _+#.#e+ #S7 */ |
| S7 /* _+#.#e+# #S7 */ |
| }; |
| |
| static int xcmp(char*, char*); |
| static int fpcmp(char*, ulong*); |
| static void frnorm(ulong*); |
| static void divascii(char*, int*, int*, int*); |
| static void mulascii(char*, int*, int*, int*); |
| |
| typedef struct Tab Tab; |
| struct Tab |
| { |
| int bp; |
| int siz; |
| char* cmp; |
| }; |
| |
| double |
| fmtstrtod(const char *as, char **aas) |
| { |
| int na, ex, dp, bp, c, i, flag, state; |
| ulong low[Prec], hig[Prec], mid[Prec]; |
| double d; |
| char *s, a[Ndig]; |
| |
| flag = 0; /* Fsign, Fesign, Fdpoint */ |
| na = 0; /* number of digits of a[] */ |
| dp = 0; /* na of decimal point */ |
| ex = 0; /* exonent */ |
| |
| state = S0; |
| for(s=(char*)as;; s++) { |
| c = *s; |
| if(c >= '0' && c <= '9') { |
| switch(state) { |
| case S0: |
| case S1: |
| case S2: |
| state = S2; |
| break; |
| case S3: |
| case S4: |
| state = S4; |
| break; |
| |
| case S5: |
| case S6: |
| case S7: |
| state = S7; |
| ex = ex*10 + (c-'0'); |
| continue; |
| } |
| if(na == 0 && c == '0') { |
| dp--; |
| continue; |
| } |
| if(na < Ndig-50) |
| a[na++] = c; |
| continue; |
| } |
| switch(c) { |
| case '\t': |
| case '\n': |
| case '\v': |
| case '\f': |
| case '\r': |
| case ' ': |
| if(state == S0) |
| continue; |
| break; |
| case '-': |
| if(state == S0) |
| flag |= Fsign; |
| else |
| flag |= Fesign; |
| case '+': |
| if(state == S0) |
| state = S1; |
| else |
| if(state == S5) |
| state = S6; |
| else |
| break; /* syntax */ |
| continue; |
| case '.': |
| flag |= Fdpoint; |
| dp = na; |
| if(state == S0 || state == S1) { |
| state = S3; |
| continue; |
| } |
| if(state == S2) { |
| state = S4; |
| continue; |
| } |
| break; |
| case 'e': |
| case 'E': |
| if(state == S2 || state == S4) { |
| state = S5; |
| continue; |
| } |
| break; |
| } |
| break; |
| } |
| |
| /* |
| * clean up return char-pointer |
| */ |
| switch(state) { |
| case S0: |
| if(xcmp(s, "nan") == 0) { |
| if(aas != nil) |
| *aas = s+3; |
| goto retnan; |
| } |
| case S1: |
| if(xcmp(s, "infinity") == 0) { |
| if(aas != nil) |
| *aas = s+8; |
| goto retinf; |
| } |
| if(xcmp(s, "inf") == 0) { |
| if(aas != nil) |
| *aas = s+3; |
| goto retinf; |
| } |
| case S3: |
| if(aas != nil) |
| *aas = (char*)as; |
| goto ret0; /* no digits found */ |
| case S6: |
| s--; /* back over +- */ |
| case S5: |
| s--; /* back over e */ |
| break; |
| } |
| if(aas != nil) |
| *aas = s; |
| |
| if(flag & Fdpoint) |
| while(na > 0 && a[na-1] == '0') |
| na--; |
| if(na == 0) |
| goto ret0; /* zero */ |
| a[na] = 0; |
| if(!(flag & Fdpoint)) |
| dp = na; |
| if(flag & Fesign) |
| ex = -ex; |
| dp += ex; |
| if(dp < -Maxe){ |
| errno = ERANGE; |
| goto ret0; /* underflow by exp */ |
| } else |
| if(dp > +Maxe) |
| goto retinf; /* overflow by exp */ |
| |
| /* |
| * normalize the decimal ascii number |
| * to range .[5-9][0-9]* e0 |
| */ |
| bp = 0; /* binary exponent */ |
| while(dp > 0) |
| divascii(a, &na, &dp, &bp); |
| while(dp < 0 || a[0] < '5') |
| mulascii(a, &na, &dp, &bp); |
| |
| /* close approx by naive conversion */ |
| mid[0] = 0; |
| mid[1] = 1; |
| for(i=0; (c=a[i]) != '\0'; i++) { |
| mid[0] = mid[0]*10 + (c-'0'); |
| mid[1] = mid[1]*10; |
| if(i >= 8) |
| break; |
| } |
| low[0] = umuldiv(mid[0], One, mid[1]); |
| hig[0] = umuldiv(mid[0]+1, One, mid[1]); |
| for(i=1; i<Prec; i++) { |
| low[i] = 0; |
| hig[i] = One-1; |
| } |
| |
| /* binary search for closest mantissa */ |
| for(;;) { |
| /* mid = (hig + low) / 2 */ |
| c = 0; |
| for(i=0; i<Prec; i++) { |
| mid[i] = hig[i] + low[i]; |
| if(c) |
| mid[i] += One; |
| c = mid[i] & 1; |
| mid[i] >>= 1; |
| } |
| frnorm(mid); |
| |
| /* compare */ |
| c = fpcmp(a, mid); |
| if(c > 0) { |
| c = 1; |
| for(i=0; i<Prec; i++) |
| if(low[i] != mid[i]) { |
| c = 0; |
| low[i] = mid[i]; |
| } |
| if(c) |
| break; /* between mid and hig */ |
| continue; |
| } |
| if(c < 0) { |
| for(i=0; i<Prec; i++) |
| hig[i] = mid[i]; |
| continue; |
| } |
| |
| /* only hard part is if even/odd roundings wants to go up */ |
| c = mid[Prec-1] & (Sigbit-1); |
| if(c == Sigbit/2 && (mid[Prec-1]&Sigbit) == 0) |
| mid[Prec-1] -= c; |
| break; /* exactly mid */ |
| } |
| |
| /* normal rounding applies */ |
| c = mid[Prec-1] & (Sigbit-1); |
| mid[Prec-1] -= c; |
| if(c >= Sigbit/2) { |
| mid[Prec-1] += Sigbit; |
| frnorm(mid); |
| } |
| goto out; |
| |
| ret0: |
| return 0; |
| |
| retnan: |
| return __NaN(); |
| |
| retinf: |
| /* |
| * Unix strtod requires these. Plan 9 would return Inf(0) or Inf(-1). */ |
| errno = ERANGE; |
| if(flag & Fsign) |
| return -HUGE_VAL; |
| return HUGE_VAL; |
| |
| out: |
| d = 0; |
| for(i=0; i<Prec; i++) |
| d = d*One + mid[i]; |
| if(flag & Fsign) |
| d = -d; |
| d = ldexp(d, bp - Prec*Nbits); |
| if(d == 0){ /* underflow */ |
| errno = ERANGE; |
| } |
| return d; |
| } |
| |
| static void |
| frnorm(ulong *f) |
| { |
| int i, c; |
| |
| c = 0; |
| for(i=Prec-1; i>0; i--) { |
| f[i] += c; |
| c = f[i] >> Nbits; |
| f[i] &= One-1; |
| } |
| f[0] += c; |
| } |
| |
| static int |
| fpcmp(char *a, ulong* f) |
| { |
| ulong tf[Prec]; |
| int i, d, c; |
| |
| for(i=0; i<Prec; i++) |
| tf[i] = f[i]; |
| |
| for(;;) { |
| /* tf *= 10 */ |
| for(i=0; i<Prec; i++) |
| tf[i] = tf[i]*10; |
| frnorm(tf); |
| d = (tf[0] >> Nbits) + '0'; |
| tf[0] &= One-1; |
| |
| /* compare next digit */ |
| c = *a; |
| if(c == 0) { |
| if('0' < d) |
| return -1; |
| if(tf[0] != 0) |
| goto cont; |
| for(i=1; i<Prec; i++) |
| if(tf[i] != 0) |
| goto cont; |
| return 0; |
| } |
| if(c > d) |
| return +1; |
| if(c < d) |
| return -1; |
| a++; |
| cont:; |
| } |
| } |
| |
| static void |
| divby(char *a, int *na, int b) |
| { |
| int n, c; |
| char *p; |
| |
| p = a; |
| n = 0; |
| while(n>>b == 0) { |
| c = *a++; |
| if(c == 0) { |
| while(n) { |
| c = n*10; |
| if(c>>b) |
| break; |
| n = c; |
| } |
| goto xx; |
| } |
| n = n*10 + c-'0'; |
| (*na)--; |
| } |
| for(;;) { |
| c = n>>b; |
| n -= c<<b; |
| *p++ = c + '0'; |
| c = *a++; |
| if(c == 0) |
| break; |
| n = n*10 + c-'0'; |
| } |
| (*na)++; |
| xx: |
| while(n) { |
| n = n*10; |
| c = n>>b; |
| n -= c<<b; |
| *p++ = c + '0'; |
| (*na)++; |
| } |
| *p = 0; |
| } |
| |
| static Tab tab1[] = |
| { |
| 1, 0, "", |
| 3, 1, "7", |
| 6, 2, "63", |
| 9, 3, "511", |
| 13, 4, "8191", |
| 16, 5, "65535", |
| 19, 6, "524287", |
| 23, 7, "8388607", |
| 26, 8, "67108863", |
| 27, 9, "134217727", |
| }; |
| |
| static void |
| divascii(char *a, int *na, int *dp, int *bp) |
| { |
| int b, d; |
| Tab *t; |
| |
| d = *dp; |
| if(d >= (int)(nelem(tab1))) |
| d = (int)(nelem(tab1))-1; |
| t = tab1 + d; |
| b = t->bp; |
| if(memcmp(a, t->cmp, t->siz) > 0) |
| d--; |
| *dp -= d; |
| *bp += b; |
| divby(a, na, b); |
| } |
| |
| static void |
| mulby(char *a, char *p, char *q, int b) |
| { |
| int n, c; |
| |
| n = 0; |
| *p = 0; |
| for(;;) { |
| q--; |
| if(q < a) |
| break; |
| c = *q - '0'; |
| c = (c<<b) + n; |
| n = c/10; |
| c -= n*10; |
| p--; |
| *p = c + '0'; |
| } |
| while(n) { |
| c = n; |
| n = c/10; |
| c -= n*10; |
| p--; |
| *p = c + '0'; |
| } |
| } |
| |
| static Tab tab2[] = |
| { |
| 1, 1, "", /* dp = 0-0 */ |
| 3, 3, "125", |
| 6, 5, "15625", |
| 9, 7, "1953125", |
| 13, 10, "1220703125", |
| 16, 12, "152587890625", |
| 19, 14, "19073486328125", |
| 23, 17, "11920928955078125", |
| 26, 19, "1490116119384765625", |
| 27, 19, "7450580596923828125", /* dp 8-9 */ |
| }; |
| |
| static void |
| mulascii(char *a, int *na, int *dp, int *bp) |
| { |
| char *p; |
| int d, b; |
| Tab *t; |
| |
| d = -*dp; |
| if(d >= (int)(nelem(tab2))) |
| d = (int)(nelem(tab2))-1; |
| t = tab2 + d; |
| b = t->bp; |
| if(memcmp(a, t->cmp, t->siz) < 0) |
| d--; |
| p = a + *na; |
| *bp -= b; |
| *dp += d; |
| *na += d; |
| mulby(a, p+d, p, b); |
| } |
| |
| static int |
| xcmp(char *a, char *b) |
| { |
| int c1, c2; |
| |
| while((c1 = *b++) != '\0') { |
| c2 = *a++; |
| if(isupper(c2)) |
| c2 = tolower(c2); |
| if(c1 != c2) |
| return 1; |
| } |
| return 0; |
| } |