|  | /* | 
|  | * Quaternion arithmetic: | 
|  | *	qadd(q, r)	returns q+r | 
|  | *	qsub(q, r)	returns q-r | 
|  | *	qneg(q)		returns -q | 
|  | *	qmul(q, r)	returns q*r | 
|  | *	qdiv(q, r)	returns q/r, can divide check. | 
|  | *	qinv(q)		returns 1/q, can divide check. | 
|  | *	double qlen(p)	returns modulus of p | 
|  | *	qunit(q)	returns a unit quaternion parallel to q | 
|  | * The following only work on unit quaternions and rotation matrices: | 
|  | *	slerp(q, r, a)	returns q*(r*q^-1)^a | 
|  | *	qmid(q, r)	slerp(q, r, .5) | 
|  | *	qsqrt(q)	qmid(q, (Quaternion){1,0,0,0}) | 
|  | *	qtom(m, q)	converts a unit quaternion q into a rotation matrix m | 
|  | *	mtoq(m)		returns a quaternion equivalent to a rotation matrix m | 
|  | */ | 
|  | #include <u.h> | 
|  | #include <libc.h> | 
|  | #include <draw.h> | 
|  | #include <geometry.h> | 
|  | void qtom(Matrix m, Quaternion q){ | 
|  | #ifndef new | 
|  | m[0][0]=1-2*(q.j*q.j+q.k*q.k); | 
|  | m[0][1]=2*(q.i*q.j+q.r*q.k); | 
|  | m[0][2]=2*(q.i*q.k-q.r*q.j); | 
|  | m[0][3]=0; | 
|  | m[1][0]=2*(q.i*q.j-q.r*q.k); | 
|  | m[1][1]=1-2*(q.i*q.i+q.k*q.k); | 
|  | m[1][2]=2*(q.j*q.k+q.r*q.i); | 
|  | m[1][3]=0; | 
|  | m[2][0]=2*(q.i*q.k+q.r*q.j); | 
|  | m[2][1]=2*(q.j*q.k-q.r*q.i); | 
|  | m[2][2]=1-2*(q.i*q.i+q.j*q.j); | 
|  | m[2][3]=0; | 
|  | m[3][0]=0; | 
|  | m[3][1]=0; | 
|  | m[3][2]=0; | 
|  | m[3][3]=1; | 
|  | #else | 
|  | /* | 
|  | * Transcribed from Ken Shoemake's new code -- not known to work | 
|  | */ | 
|  | double Nq = q.r*q.r+q.i*q.i+q.j*q.j+q.k*q.k; | 
|  | double s = (Nq > 0.0) ? (2.0 / Nq) : 0.0; | 
|  | double xs = q.i*s,		ys = q.j*s,		zs = q.k*s; | 
|  | double wx = q.r*xs,		wy = q.r*ys,		wz = q.r*zs; | 
|  | double xx = q.i*xs,		xy = q.i*ys,		xz = q.i*zs; | 
|  | double yy = q.j*ys,		yz = q.j*zs,		zz = q.k*zs; | 
|  | m[0][0] = 1.0 - (yy + zz); m[1][0] = xy + wz;         m[2][0] = xz - wy; | 
|  | m[0][1] = xy - wz;         m[1][1] = 1.0 - (xx + zz); m[2][1] = yz + wx; | 
|  | m[0][2] = xz + wy;         m[1][2] = yz - wx;         m[2][2] = 1.0 - (xx + yy); | 
|  | m[0][3] = m[1][3] = m[2][3] = m[3][0] = m[3][1] = m[3][2] = 0.0; | 
|  | m[3][3] = 1.0; | 
|  | #endif | 
|  | } | 
|  | Quaternion mtoq(Matrix mat){ | 
|  | #ifndef new | 
|  | #define	EPS	1.387778780781445675529539585113525e-17	/* 2^-56 */ | 
|  | double t; | 
|  | Quaternion q; | 
|  | q.r=0.; | 
|  | q.i=0.; | 
|  | q.j=0.; | 
|  | q.k=1.; | 
|  | if((t=.25*(1+mat[0][0]+mat[1][1]+mat[2][2]))>EPS){ | 
|  | q.r=sqrt(t); | 
|  | t=4*q.r; | 
|  | q.i=(mat[1][2]-mat[2][1])/t; | 
|  | q.j=(mat[2][0]-mat[0][2])/t; | 
|  | q.k=(mat[0][1]-mat[1][0])/t; | 
|  | } | 
|  | else if((t=-.5*(mat[1][1]+mat[2][2]))>EPS){ | 
|  | q.i=sqrt(t); | 
|  | t=2*q.i; | 
|  | q.j=mat[0][1]/t; | 
|  | q.k=mat[0][2]/t; | 
|  | } | 
|  | else if((t=.5*(1-mat[2][2]))>EPS){ | 
|  | q.j=sqrt(t); | 
|  | q.k=mat[1][2]/(2*q.j); | 
|  | } | 
|  | return q; | 
|  | #else | 
|  | /* | 
|  | * Transcribed from Ken Shoemake's new code -- not known to work | 
|  | */ | 
|  | /* This algorithm avoids near-zero divides by looking for a large | 
|  | * component -- first r, then i, j, or k.  When the trace is greater than zero, | 
|  | * |r| is greater than 1/2, which is as small as a largest component can be. | 
|  | * Otherwise, the largest diagonal entry corresponds to the largest of |i|, | 
|  | * |j|, or |k|, one of which must be larger than |r|, and at least 1/2. | 
|  | */ | 
|  | Quaternion qu; | 
|  | double tr, s; | 
|  |  | 
|  | tr = mat[0][0] + mat[1][1] + mat[2][2]; | 
|  | if (tr >= 0.0) { | 
|  | s = sqrt(tr + mat[3][3]); | 
|  | qu.r = s*0.5; | 
|  | s = 0.5 / s; | 
|  | qu.i = (mat[2][1] - mat[1][2]) * s; | 
|  | qu.j = (mat[0][2] - mat[2][0]) * s; | 
|  | qu.k = (mat[1][0] - mat[0][1]) * s; | 
|  | } | 
|  | else { | 
|  | int i = 0; | 
|  | if (mat[1][1] > mat[0][0]) i = 1; | 
|  | if (mat[2][2] > mat[i][i]) i = 2; | 
|  | switch(i){ | 
|  | case 0: | 
|  | s = sqrt( (mat[0][0] - (mat[1][1]+mat[2][2])) + mat[3][3] ); | 
|  | qu.i = s*0.5; | 
|  | s = 0.5 / s; | 
|  | qu.j = (mat[0][1] + mat[1][0]) * s; | 
|  | qu.k = (mat[2][0] + mat[0][2]) * s; | 
|  | qu.r = (mat[2][1] - mat[1][2]) * s; | 
|  | break; | 
|  | case 1: | 
|  | s = sqrt( (mat[1][1] - (mat[2][2]+mat[0][0])) + mat[3][3] ); | 
|  | qu.j = s*0.5; | 
|  | s = 0.5 / s; | 
|  | qu.k = (mat[1][2] + mat[2][1]) * s; | 
|  | qu.i = (mat[0][1] + mat[1][0]) * s; | 
|  | qu.r = (mat[0][2] - mat[2][0]) * s; | 
|  | break; | 
|  | case 2: | 
|  | s = sqrt( (mat[2][2] - (mat[0][0]+mat[1][1])) + mat[3][3] ); | 
|  | qu.k = s*0.5; | 
|  | s = 0.5 / s; | 
|  | qu.i = (mat[2][0] + mat[0][2]) * s; | 
|  | qu.j = (mat[1][2] + mat[2][1]) * s; | 
|  | qu.r = (mat[1][0] - mat[0][1]) * s; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (mat[3][3] != 1.0){ | 
|  | s=1/sqrt(mat[3][3]); | 
|  | qu.r*=s; | 
|  | qu.i*=s; | 
|  | qu.j*=s; | 
|  | qu.k*=s; | 
|  | } | 
|  | return (qu); | 
|  | #endif | 
|  | } | 
|  | Quaternion qadd(Quaternion q, Quaternion r){ | 
|  | q.r+=r.r; | 
|  | q.i+=r.i; | 
|  | q.j+=r.j; | 
|  | q.k+=r.k; | 
|  | return q; | 
|  | } | 
|  | Quaternion qsub(Quaternion q, Quaternion r){ | 
|  | q.r-=r.r; | 
|  | q.i-=r.i; | 
|  | q.j-=r.j; | 
|  | q.k-=r.k; | 
|  | return q; | 
|  | } | 
|  | Quaternion qneg(Quaternion q){ | 
|  | q.r=-q.r; | 
|  | q.i=-q.i; | 
|  | q.j=-q.j; | 
|  | q.k=-q.k; | 
|  | return q; | 
|  | } | 
|  | Quaternion qmul(Quaternion q, Quaternion r){ | 
|  | Quaternion s; | 
|  | s.r=q.r*r.r-q.i*r.i-q.j*r.j-q.k*r.k; | 
|  | s.i=q.r*r.i+r.r*q.i+q.j*r.k-q.k*r.j; | 
|  | s.j=q.r*r.j+r.r*q.j+q.k*r.i-q.i*r.k; | 
|  | s.k=q.r*r.k+r.r*q.k+q.i*r.j-q.j*r.i; | 
|  | return s; | 
|  | } | 
|  | Quaternion qdiv(Quaternion q, Quaternion r){ | 
|  | return qmul(q, qinv(r)); | 
|  | } | 
|  | Quaternion qunit(Quaternion q){ | 
|  | double l=qlen(q); | 
|  | q.r/=l; | 
|  | q.i/=l; | 
|  | q.j/=l; | 
|  | q.k/=l; | 
|  | return q; | 
|  | } | 
|  | /* | 
|  | * Bug?: takes no action on divide check | 
|  | */ | 
|  | Quaternion qinv(Quaternion q){ | 
|  | double l=q.r*q.r+q.i*q.i+q.j*q.j+q.k*q.k; | 
|  | q.r/=l; | 
|  | q.i=-q.i/l; | 
|  | q.j=-q.j/l; | 
|  | q.k=-q.k/l; | 
|  | return q; | 
|  | } | 
|  | double qlen(Quaternion p){ | 
|  | return sqrt(p.r*p.r+p.i*p.i+p.j*p.j+p.k*p.k); | 
|  | } | 
|  | Quaternion slerp(Quaternion q, Quaternion r, double a){ | 
|  | double u, v, ang, s; | 
|  | double dot=q.r*r.r+q.i*r.i+q.j*r.j+q.k*r.k; | 
|  | ang=dot<-1?PI:dot>1?0:acos(dot); /* acos gives NaN for dot slightly out of range */ | 
|  | s=sin(ang); | 
|  | if(s==0) return ang<PI/2?q:r; | 
|  | u=sin((1-a)*ang)/s; | 
|  | v=sin(a*ang)/s; | 
|  | q.r=u*q.r+v*r.r; | 
|  | q.i=u*q.i+v*r.i; | 
|  | q.j=u*q.j+v*r.j; | 
|  | q.k=u*q.k+v*r.k; | 
|  | return q; | 
|  | } | 
|  | /* | 
|  | * Only works if qlen(q)==qlen(r)==1 | 
|  | */ | 
|  | Quaternion qmid(Quaternion q, Quaternion r){ | 
|  | double l; | 
|  | q=qadd(q, r); | 
|  | l=qlen(q); | 
|  | if(l<1e-12){ | 
|  | q.r=r.i; | 
|  | q.i=-r.r; | 
|  | q.j=r.k; | 
|  | q.k=-r.j; | 
|  | } | 
|  | else{ | 
|  | q.r/=l; | 
|  | q.i/=l; | 
|  | q.j/=l; | 
|  | q.k/=l; | 
|  | } | 
|  | return q; | 
|  | } | 
|  | /* | 
|  | * Only works if qlen(q)==1 | 
|  | */ | 
|  | static Quaternion qident={1,0,0,0}; | 
|  | Quaternion qsqrt(Quaternion q){ | 
|  | return qmid(q, qident); | 
|  | } |