blob: 966edae9de14ba2ba6f9c27e0e50fe63e511343b [file] [log] [blame]
#include "misc.h"
#include "slug.h"
#include "range.h"
#include "page.h"
const int MAXRANGES = 1000;
static range *ptemp[MAXRANGES]; // for movefloats()
static void swapright(int n) // used by movefloats()
{
range *t = ptemp[n];
ptemp[n] = ptemp[n+1];
ptemp[n+1] = t;
ptemp[n]->setaccum( ptemp[n+1]->accum() -
ptemp[n+1]->rawht() + ptemp[n]->rawht() );
ptemp[n+1]->setaccum( ptemp[n]->accum() + ptemp[n+1]->rawht() );
}
// Figure out the goal position for each floating range on scratch,
// and move it past stream ranges until it's as close to its goal as possible.
static void movefloats(stream *scratch, double scale)
{
int nranges, i;
const int Huge = 100000;
for (nranges = 0; scratch->more(); scratch->advance())
ptemp[nranges++] = scratch->current();
scratch->freeall();
ufrange rtemp;
ptemp[nranges] = &rtemp;
rtemp.setgoal(Huge);
int accumV = 0; // compute accum values and
for (i = 0; i < nranges; i++) { // pick closest goal for floats
ptemp[i]->pickgoal(accumV, scale);
ptemp[i]->setaccum(accumV += ptemp[i]->rawht());
}
int j; // index for inner loop below:
for (i = nranges; --i >= 0; ) // stably sort floats to bottom
for (j = i; j < nranges; j++)
if (ptemp[j]->goal() > ptemp[j+1]->goal())
swapright(j);
else
break;
if (dbg & 16)
printf("#movefloats: before floating, from bottom:\n");
for (i = nranges; --i >= 0; ) { // find topmost float
if (ptemp[i]->goal() == NOGOAL)
break;
if (dbg & 16)
printf("# serialno %d goal %d height %d\n",
ptemp[i]->serialno(), ptemp[i]->goal(),
ptemp[i]->rawht());
} // i+1 is topmost float
for (i++ ; i < nranges; i++) // move each float up the page
for (j = i; j > 0; j--) // as long as closer to its goal
if (ptemp[j]->goal()
<= ptemp[j-1]->accum() + ptemp[j]->rawht()/2
&& ptemp[j-1]->goal() == NOGOAL)
swapright(j-1);
else
break;
if (ptemp[nranges] != &rtemp)
ERROR "goal sentinel has disappeared from movefloats" FATAL;
for (i = 0; i < nranges; i++) // copy sorted list back
scratch->append(ptemp[i]);
}
// Traverse the leaves of a tree of ranges, filtering out only SP and VBOX.
static range *filter(generator *g)
{
range *r;
while ((r = g->next()) != 0)
if (r->isvbox() || r->issp())
break;
return r;
}
// Zero out leading and trailing spaces; coalesce adjacent SP's.
static void trimspace(stream *scratch)
{
generator g;
range *r, *prevr = 0;
for (g = scratch; (r = filter(&g)) != 0 && r->issp(); prevr = r)
r->setheight(0); // zap leading SP
for ( ; (r = filter(&g)) != 0; prevr = r)
if (r->issp())
if (prevr && prevr->issp()) {
// coalesce adjacent SPs
r->setheight(max(r->rawht(), prevr->height()));
prevr->setheight(0);
} else // a VBOX intervened
r->setheight(r->rawht());
if (prevr && prevr->issp()) // zap *all* trailing space
prevr->setheight(0); // (since it all coalesced
// into the last one)
}
// Pad the non-zero SP's in scratch so the total height is wantht.
// Note that the SP values in scratch are not the raw values, and
// indeed may already have been padded.
static void justify(stream *scratch, int wantht)
{
range *r;
int nsp = 0, hsp = 0;
int adjht = scratch->height();
// Find all the spaces.
generator g;
for (g = scratch; (r = g.next()) != 0; )
if (r->issp() && r->height() > 0) {
nsp++;
hsp += r->height();
}
int excess = wantht - adjht;
if (excess < 0)
ERROR "something on page %d is oversize by %d\n",
userpn, -excess WARNING;
if (dbg & 16)
printf("# justify %d: excess %d nsp %d hsp %d adjht %d\n",
userpn, excess, nsp, hsp, adjht);
if (excess <= 0 || nsp == 0)
return;
// Redistribute the excess space.
for (g = scratch; (r = g.next()) != 0; )
if (r->issp() && r->height() > 0) {
int delta = (int) ((float)(r->height()*excess)/hsp + 0.5);
if (dbg & 16)
printf("# pad space %d by %d: hsp %d excess %d\n",
r->height(), delta, hsp, excess);
r->setheight(r->height() + delta);
}
}
// If r were added to s, would the height of the composed result be at most maxht?
int wouldfit(range *r, stream *s, int maxht)
{
if (r->rawht() + s->rawht() <= maxht)
return 1; // the conservative test succeeded
stream scratch; // local playground for costly test
for (stream cd = *s; cd.more(); cd.advance())
scratch.append(cd.current());
scratch.append(r);
movefloats(&scratch, ((double) scratch.rawht())/maxht);
trimspace(&scratch);
int retval = scratch.height() <= maxht;
scratch.freeall();
return retval;
}
// If s1 were added to s, would the height of the composed result be at most maxht?
// The computational structure is similar to that above.
int wouldfit(stream *s1, stream *s, int maxht)
{
if (s1->rawht() + s->rawht() <= maxht)
return 1;
stream scratch, cd;
for (cd = *s; cd.more(); cd.advance())
scratch.append(cd.current());
for (cd = *s1; cd.more(); cd.advance())
scratch.append(cd.current());
movefloats(&scratch, ((double) scratch.rawht())/maxht);
trimspace(&scratch);
int retval = scratch.height() <= maxht;
scratch.freeall();
return retval;
}
// All of stream *s is destined for one column or the other; which is it to be?
void multicol::choosecol(stream *s, int goalht)
{
stream *dest;
if (!leftblocked && wouldfit(s, &(column[0]), goalht))
dest = &(column[0]);
else {
dest = &(column[1]);
if (!s->current()->floatable())
// a stream item is going into the right
// column, so no more can go into the left.
leftblocked = 1;
}
for (stream cd = *s; cd.more(); cd.advance())
dest->append(cd.current());
}
double coltol = 0.5;
// Try, very hard, to put everything in the multicol into two columns
// so that the total height is at most htavail.
void multicol::compose(int defonly)
{
if (!nonempty()) {
setheight(0);
return;
}
scratch.freeall(); // fill scratch with everything destined
// for either column
stream cd;
for (cd = definite; cd.more(); cd.advance())
scratch.append(cd.current());
if (!defonly)
for (cd = *(currpage->stage); cd.more(); cd.advance())
if (cd.current()->numcol() == 2)
scratch.append(cd.current());
scratch.restoreall(); // in particular, floatables' goals
int i;
int rawht = scratch.rawht();
int halfheight = (int)(coltol*rawht);
// choose a goal height
int maxht = defonly ? halfheight : htavail;
secondtry:
for (i = 0; i < 2; i++)
column[i].freeall();
leftblocked = 0;
cd = scratch;
while (cd.more()) {
queue ministage; // for the minimally acceptable chunks
ministage.freeall(); // that are to be added to either column
while (cd.more() && !cd.current()->issentinel()) {
ministage.enqueue(cd.current());
cd.advance();
}
choosecol(&ministage, maxht);
if (cd.more() && cd.current()->issentinel())
cd.advance(); // past sentinel
}
if (height() > htavail && maxht != htavail) {
// We tried to balance the columns, but
// the result was too tall. Go back
// and try again with the less ambitious
// goal of fitting the space available.
maxht = htavail;
goto secondtry;
}
for (i = 0; i < 2; i++) {
movefloats(&(column[i]), ((double) column[i].rawht())/currpage->pagesize);
trimspace(&(column[i]));
}
if (dbg & 32) {
printf("#multicol::compose: htavail %d maxht %d dv %d\n",
htavail, maxht, height());
dump();
}
if (defonly)
stretch(height());
}
// A sequence of two-column ranges waits on the stage.
// So long as the page's skeleton hasn't changed--that is, the maximum height
// available to the two-column chunk is the same--we just use the columns that
// have been built up so far, and choose a column into which to put the stage.
// If the skeleton has changed, however, then we may need to make entirely
// new decisions about which column gets what, so we recompose the whole page.
void multicol::tryout()
{
if (htavail == prevhtavail)
choosecol(currpage->stage, htavail);
else
currpage->compose(DRAFT);
prevhtavail = htavail;
}
// Make both columns the same height.
// (Maybe this should also be governed by minfull,
// to prevent padding very underfull columns.)
void multicol::stretch(int wantht)
{
if (wantht < height())
ERROR "page %d: two-column chunk cannot shrink\n", userpn FATAL;
for (int i = 0; i < 2; i++)
justify(&(column[i]), wantht);
if (dbg & 16)
printf("#col hts: left %d right %d\n",
column[0].height(), column[1].height());
}
// Report an upper bound on how tall the current two-column object is.
// The (possibly composed) heights of the two columns give a crude upper
// bound on the total height. If the result is more than the height
// available for the two-column object, then the columns are each
// composed to give a better estimate of their heights.
int multicol::height()
{
int retval = max(column[0].height(), column[1].height());
if (retval < htavail)
return retval;
for (int i = 0; i < 2; i++) {
movefloats(&(column[i]), ((double) column[i].height())/currpage->pagesize);
trimspace(&(column[i]));
}
return max(column[0].height(), column[1].height());
}
void multicol::dump()
{
printf("####2COL dv %d\n", height());
printf("# left column:\n");
column[0].dump();
printf("# right column:\n");
column[1].dump();
}
// From the head of queue qp, peel off a piece whose raw height is at most space.
int peeloff(stream *qp, int space)
{
stream *s1 = qp->current()->children();
if (!(s1 && s1->more() && s1->current()->height() <= space))
// in other words, either qp's head is
// not nested, or its first subrange
return 0; // is also too big, so we give up
qp->split();
s1 = qp->current()->children();
stream *s2 = qp->next()->children();
while (s2->more() && s2->current()->rawht() <= space) {
s1->append(s2->current());
space -= s2->current()->rawht();
s2->advance();
}
return 1;
}
// There are four possibilities for consecutive calls to tryout().
// If we're processing a sequence of single-column ranges, tryout()
// uses the original algorithm: (1) conservative test; (2) costly test;
// (3) split a breakable item.
// If we're processing a sequence of double-column ranges, tryout()
// defers to twocol->tryout(), which gradually builds up the contents
// of the two columns until they're as tall as they can be without
// exceeding twocol->htavail.
// If we're processing a sequence of single-column ranges and we
// get a double-column range, then we use compose() to build a
// skeleton page and set twocol->htavail, the maximum height that
// should be occupied by twocol.
// If we're processing a sequence of double-column ranges and we
// get a single-column range, then we should go back and squish
// the double-column chunk as short as possible before we see if
// we can fit the single-column range.
void page::tryout()
{
if (!stage->more())
ERROR "empty stage in page::tryout()\n" FATAL;
int curnumcol = stage->current()->numcol();
if (dbg & 32) {
printf("#page::tryout(): ncol = %d, prevncol = %d; on stage:\n",
curnumcol, prevncol);
stage->dump();
printf("#END of stage contents\n");
}
switch(curnumcol) {
default:
ERROR "unexpected number of columns in tryout(): %d\n",
stage->current()->numcol() FATAL;
break;
case 1:
if (prevncol == 2)
compose(FINAL);
if (wouldfit(stage, &definite, pagesize - twocol->height()))
commit();
else if (stage->current()->breakable() || blank()
&& peeloff(stage,
pagesize - (definite.height() + twocol->height()))) {
// first add the peeled-off part that fits
adddef(stage->dequeue());
// then send the rest back for later
stage->current()->setbreaking();
welsh();
} else if (blank()) {
stage->current()->rdump();
ERROR "A %s is too big to continue.\n",
stage->current()->typename() FATAL;
} else
welsh();
break;
case 2:
if (prevncol == 1)
compose(DRAFT);
else
twocol->tryout();
if (scratch.height() <= pagesize)
commit();
else
welsh();
break;
}
prevncol = curnumcol;
}
// To compose the page, we (1) fill scratch with the stuff that's meant to
// go on the page; (2) compose scratch as best we can; (3) set the maximum
// height available to the two-column part of the page; (4) have the two-
// column part compose itself.
// In the computation of twocol->htavail, it does not matter that
// twocol->height() is merely an upper bound, because it is merely being
// subtracted out to give the exact total height of the single-column stuff.
void page::compose(int final)
{
makescratch(final);
int adjht = scratch.rawht();
if (dbg & 16)
printf("# page %d measure %d\n", userpn, adjht);
movefloats(&scratch, ((double) adjht)/pagesize);
trimspace(&scratch);
twocol->htavail = pagesize - (scratch.height() - twocol->height());
twocol->compose(final);
adjht = scratch.height();
if (dbg & 16)
printf("# page %d measure %d after trim\n", userpn, adjht);
}
// Fill the scratch area with ranges destined for the page.
// If defonly == 0, then add anything that's on stage--this is a trial run.
// If defonly != 0, use only what's definitely on the page.
void page::makescratch(int defonly)
{
scratch.freeall();
stream cd;
for (cd = definite; cd.more(); cd.advance())
scratch.append(cd.current());
if (!defonly)
for (cd = *stage; cd.more(); cd.advance())
if (cd.current()->numcol() == 1)
scratch.append(cd.current());
if (twocol->nonempty())
scratch.append(twocol);
}
// Accept the current contents of the stage.
// If the stage contains two-column ranges, add a sentinel to indicate the end
// of a chunk of stage contents.
void page::commit()
{
if (dbg & 4)
printf("#entering page::commit()\n");
int numcol = 0;
while (stage->more()) {
numcol = stage->current()->numcol();
adddef(stage->dequeue());
}
if (numcol == 2)
adddef(new sentrange);
}
// Send the current contents of the stage back to its source.
void page::welsh()
{
if (dbg & 4)
printf("#entering page::welsh()\n");
while (stage->more()) {
range *r = stage->dequeue();
r->enqueue(ANDBLOCK);
}
}
enum { USonly = 1 };
// So long as anything is eligible to go onto the page, keep trying.
// Once nothing is eligible, compose and justify the page.
void page::fill()
{
while (stage->prime())
stage->pend();
compose(FINAL);
if (dbg & 16)
scratch.dump();
if (anymore()) {
int adjht = scratch.height();
if (adjht > minfull*pagesize) {
justify(&scratch, pagesize);
adjht = scratch.height();
int stretchamt = max(pagesize - adjht, 0);
twocol->stretch(twocol->height() + stretchamt);
// in case the page's stretchability lies
// entirely in its two-column part
} else
ERROR "page %d only %.0f%% full; will not be adjusted\n",
userpn, 100*(double) adjht/pagesize WARNING;
}
}
void page::adddef(range *r)
{
if (dbg & 4)
printf("#entering page::adddef()\n");
switch (r->numcol()) {
case 1: definite.append(r);
break;
case 2: twocol->definite.append(r);
break;
default: ERROR "%d-column range unexpected\n", r->numcol() FATAL;
}
}
int multicol::print(int cv, int col)
{
if (col != 0)
ERROR "multicolumn output must start in left column\n" FATAL;
int curv = cv, maxv = cv; // print left column
for ( ; column[0].more(); column[0].advance()) {
curv = column[0].current()->print(curv, 0);
maxv = max(maxv, curv);
}
curv = cv; // print right column
for ( ; column[1].more(); column[1].advance()) {
curv = column[1].current()->print(curv, 1);
maxv = max(maxv, curv);
}
return maxv;
}
void page::print()
{
static int tops = 1, bots = 1;
if (!scratch.more()) {
ERROR "## Here's what's left on squeue:\n" WARNING;
squeue.dump();
ERROR "## Here's what's left on bfqueue:\n" WARNING;
bfqueue.dump();
ERROR "## Here's what's left on ufqueue:\n" WARNING;
ufqueue.dump();
ERROR "page %d appears to be empty\n", userpn WARNING;
fflush(stderr), fflush(stdout), exit(0);
// something is very wrong if this happens
}
printf("p%d\n", userpn); // print troff output page number
if (ptlist.more()) { // print page header
ptlist.current()->print(0, 0);
ptlist.advance();
} else if (tops) {
ERROR "ran out of page titles at %d\n", userpn WARNING;
tops = 0;
}
int curv = 0;
printf("V%d\n", curv = pagetop);// print page contents
for ( ; scratch.more(); scratch.advance()) {
curv = scratch.current()->print(curv, 0);
}
if (btlist.more()) { // print page footer
btlist.current()->print(0, 0);
btlist.advance();
} else if (bots) {
ERROR "ran out of page bottoms at %d\n", userpn WARNING;
bots = 0;
}
printf("V%d\n", physbot); // finish troff output page
}
int pagetop = 0; // top printing margin
int pagebot = 0; // bottom printing margin
int physbot = 0; // physical bottom of page
double minfull = 0.9; // minimum fullness before padding
int pn = 0; // cardinal page number
int userpn = 0; // page number derived from PT slugs
static void makepage()
{
page pg(pagebot - pagetop);
++pn;
userpn = ptlist.more() ? ptlist.current()->pn() : pn;
pg.fill();
pg.print();
}
static void conv(FILE *fp)
{
startup(fp); // read slugs, etc.
while (anymore())
makepage();
lastrange->print(0, 0); // trailer
checkout(); // check that everything was printed
}
int
main(int argc, char **argv)
{
static FILE *fp = stdin;
progname = argv[0];
while (argc > 1 && argv[1][0] == '-') {
switch (argv[1][1]) {
case 'd':
dbg = atoi(&argv[1][2]);
if (dbg == 0)
dbg = ~0;
break;
case 'm':
minfull = 0.01*atof(&argv[1][2]);
break;
case 'c':
coltol = 0.01*atof(&argv[1][2]);
break;
case 'w':
wantwarn = 1;
break;
}
argc--;
argv++;
}
if (argc <= 1)
conv(stdin);
else
while (--argc > 0) {
if (strcmp(*++argv, "-") == 0)
fp = stdin;
else if ((fp = fopen(*argv, "r")) == NULL)
ERROR "can't open %s\n", *argv FATAL;
conv(fp);
fclose(fp);
}
exit(0);
return 0; /* gcc */
}