| /* |
| * Quaternion arithmetic: |
| * qadd(q, r) returns q+r |
| * qsub(q, r) returns q-r |
| * qneg(q) returns -q |
| * qmul(q, r) returns q*r |
| * qdiv(q, r) returns q/r, can divide check. |
| * qinv(q) returns 1/q, can divide check. |
| * double qlen(p) returns modulus of p |
| * qunit(q) returns a unit quaternion parallel to q |
| * The following only work on unit quaternions and rotation matrices: |
| * slerp(q, r, a) returns q*(r*q^-1)^a |
| * qmid(q, r) slerp(q, r, .5) |
| * qsqrt(q) qmid(q, (Quaternion){1,0,0,0}) |
| * qtom(m, q) converts a unit quaternion q into a rotation matrix m |
| * mtoq(m) returns a quaternion equivalent to a rotation matrix m |
| */ |
| #include <u.h> |
| #include <libc.h> |
| #include <draw.h> |
| #include <geometry.h> |
| void qtom(Matrix m, Quaternion q){ |
| #ifndef new |
| m[0][0]=1-2*(q.j*q.j+q.k*q.k); |
| m[0][1]=2*(q.i*q.j+q.r*q.k); |
| m[0][2]=2*(q.i*q.k-q.r*q.j); |
| m[0][3]=0; |
| m[1][0]=2*(q.i*q.j-q.r*q.k); |
| m[1][1]=1-2*(q.i*q.i+q.k*q.k); |
| m[1][2]=2*(q.j*q.k+q.r*q.i); |
| m[1][3]=0; |
| m[2][0]=2*(q.i*q.k+q.r*q.j); |
| m[2][1]=2*(q.j*q.k-q.r*q.i); |
| m[2][2]=1-2*(q.i*q.i+q.j*q.j); |
| m[2][3]=0; |
| m[3][0]=0; |
| m[3][1]=0; |
| m[3][2]=0; |
| m[3][3]=1; |
| #else |
| /* |
| * Transcribed from Ken Shoemake's new code -- not known to work |
| */ |
| double Nq = q.r*q.r+q.i*q.i+q.j*q.j+q.k*q.k; |
| double s = (Nq > 0.0) ? (2.0 / Nq) : 0.0; |
| double xs = q.i*s, ys = q.j*s, zs = q.k*s; |
| double wx = q.r*xs, wy = q.r*ys, wz = q.r*zs; |
| double xx = q.i*xs, xy = q.i*ys, xz = q.i*zs; |
| double yy = q.j*ys, yz = q.j*zs, zz = q.k*zs; |
| m[0][0] = 1.0 - (yy + zz); m[1][0] = xy + wz; m[2][0] = xz - wy; |
| m[0][1] = xy - wz; m[1][1] = 1.0 - (xx + zz); m[2][1] = yz + wx; |
| m[0][2] = xz + wy; m[1][2] = yz - wx; m[2][2] = 1.0 - (xx + yy); |
| m[0][3] = m[1][3] = m[2][3] = m[3][0] = m[3][1] = m[3][2] = 0.0; |
| m[3][3] = 1.0; |
| #endif |
| } |
| Quaternion mtoq(Matrix mat){ |
| #ifndef new |
| #define EPS 1.387778780781445675529539585113525e-17 /* 2^-56 */ |
| double t; |
| Quaternion q; |
| q.r=0.; |
| q.i=0.; |
| q.j=0.; |
| q.k=1.; |
| if((t=.25*(1+mat[0][0]+mat[1][1]+mat[2][2]))>EPS){ |
| q.r=sqrt(t); |
| t=4*q.r; |
| q.i=(mat[1][2]-mat[2][1])/t; |
| q.j=(mat[2][0]-mat[0][2])/t; |
| q.k=(mat[0][1]-mat[1][0])/t; |
| } |
| else if((t=-.5*(mat[1][1]+mat[2][2]))>EPS){ |
| q.i=sqrt(t); |
| t=2*q.i; |
| q.j=mat[0][1]/t; |
| q.k=mat[0][2]/t; |
| } |
| else if((t=.5*(1-mat[2][2]))>EPS){ |
| q.j=sqrt(t); |
| q.k=mat[1][2]/(2*q.j); |
| } |
| return q; |
| #else |
| /* |
| * Transcribed from Ken Shoemake's new code -- not known to work |
| */ |
| /* This algorithm avoids near-zero divides by looking for a large |
| * component -- first r, then i, j, or k. When the trace is greater than zero, |
| * |r| is greater than 1/2, which is as small as a largest component can be. |
| * Otherwise, the largest diagonal entry corresponds to the largest of |i|, |
| * |j|, or |k|, one of which must be larger than |r|, and at least 1/2. |
| */ |
| Quaternion qu; |
| double tr, s; |
| |
| tr = mat[0][0] + mat[1][1] + mat[2][2]; |
| if (tr >= 0.0) { |
| s = sqrt(tr + mat[3][3]); |
| qu.r = s*0.5; |
| s = 0.5 / s; |
| qu.i = (mat[2][1] - mat[1][2]) * s; |
| qu.j = (mat[0][2] - mat[2][0]) * s; |
| qu.k = (mat[1][0] - mat[0][1]) * s; |
| } |
| else { |
| int i = 0; |
| if (mat[1][1] > mat[0][0]) i = 1; |
| if (mat[2][2] > mat[i][i]) i = 2; |
| switch(i){ |
| case 0: |
| s = sqrt( (mat[0][0] - (mat[1][1]+mat[2][2])) + mat[3][3] ); |
| qu.i = s*0.5; |
| s = 0.5 / s; |
| qu.j = (mat[0][1] + mat[1][0]) * s; |
| qu.k = (mat[2][0] + mat[0][2]) * s; |
| qu.r = (mat[2][1] - mat[1][2]) * s; |
| break; |
| case 1: |
| s = sqrt( (mat[1][1] - (mat[2][2]+mat[0][0])) + mat[3][3] ); |
| qu.j = s*0.5; |
| s = 0.5 / s; |
| qu.k = (mat[1][2] + mat[2][1]) * s; |
| qu.i = (mat[0][1] + mat[1][0]) * s; |
| qu.r = (mat[0][2] - mat[2][0]) * s; |
| break; |
| case 2: |
| s = sqrt( (mat[2][2] - (mat[0][0]+mat[1][1])) + mat[3][3] ); |
| qu.k = s*0.5; |
| s = 0.5 / s; |
| qu.i = (mat[2][0] + mat[0][2]) * s; |
| qu.j = (mat[1][2] + mat[2][1]) * s; |
| qu.r = (mat[1][0] - mat[0][1]) * s; |
| break; |
| } |
| } |
| if (mat[3][3] != 1.0){ |
| s=1/sqrt(mat[3][3]); |
| qu.r*=s; |
| qu.i*=s; |
| qu.j*=s; |
| qu.k*=s; |
| } |
| return (qu); |
| #endif |
| } |
| Quaternion qadd(Quaternion q, Quaternion r){ |
| q.r+=r.r; |
| q.i+=r.i; |
| q.j+=r.j; |
| q.k+=r.k; |
| return q; |
| } |
| Quaternion qsub(Quaternion q, Quaternion r){ |
| q.r-=r.r; |
| q.i-=r.i; |
| q.j-=r.j; |
| q.k-=r.k; |
| return q; |
| } |
| Quaternion qneg(Quaternion q){ |
| q.r=-q.r; |
| q.i=-q.i; |
| q.j=-q.j; |
| q.k=-q.k; |
| return q; |
| } |
| Quaternion qmul(Quaternion q, Quaternion r){ |
| Quaternion s; |
| s.r=q.r*r.r-q.i*r.i-q.j*r.j-q.k*r.k; |
| s.i=q.r*r.i+r.r*q.i+q.j*r.k-q.k*r.j; |
| s.j=q.r*r.j+r.r*q.j+q.k*r.i-q.i*r.k; |
| s.k=q.r*r.k+r.r*q.k+q.i*r.j-q.j*r.i; |
| return s; |
| } |
| Quaternion qdiv(Quaternion q, Quaternion r){ |
| return qmul(q, qinv(r)); |
| } |
| Quaternion qunit(Quaternion q){ |
| double l=qlen(q); |
| q.r/=l; |
| q.i/=l; |
| q.j/=l; |
| q.k/=l; |
| return q; |
| } |
| /* |
| * Bug?: takes no action on divide check |
| */ |
| Quaternion qinv(Quaternion q){ |
| double l=q.r*q.r+q.i*q.i+q.j*q.j+q.k*q.k; |
| q.r/=l; |
| q.i=-q.i/l; |
| q.j=-q.j/l; |
| q.k=-q.k/l; |
| return q; |
| } |
| double qlen(Quaternion p){ |
| return sqrt(p.r*p.r+p.i*p.i+p.j*p.j+p.k*p.k); |
| } |
| Quaternion slerp(Quaternion q, Quaternion r, double a){ |
| double u, v, ang, s; |
| double dot=q.r*r.r+q.i*r.i+q.j*r.j+q.k*r.k; |
| ang=dot<-1?PI:dot>1?0:acos(dot); /* acos gives NaN for dot slightly out of range */ |
| s=sin(ang); |
| if(s==0) return ang<PI/2?q:r; |
| u=sin((1-a)*ang)/s; |
| v=sin(a*ang)/s; |
| q.r=u*q.r+v*r.r; |
| q.i=u*q.i+v*r.i; |
| q.j=u*q.j+v*r.j; |
| q.k=u*q.k+v*r.k; |
| return q; |
| } |
| /* |
| * Only works if qlen(q)==qlen(r)==1 |
| */ |
| Quaternion qmid(Quaternion q, Quaternion r){ |
| double l; |
| q=qadd(q, r); |
| l=qlen(q); |
| if(l<1e-12){ |
| q.r=r.i; |
| q.i=-r.r; |
| q.j=r.k; |
| q.k=-r.j; |
| } |
| else{ |
| q.r/=l; |
| q.i/=l; |
| q.j/=l; |
| q.k/=l; |
| } |
| return q; |
| } |
| /* |
| * Only works if qlen(q)==1 |
| */ |
| static Quaternion qident={1,0,0,0}; |
| Quaternion qsqrt(Quaternion q){ |
| return qmid(q, qident); |
| } |