|  | /*% cc -gpc % | 
|  | * These transformation routines maintain stacks of transformations | 
|  | * and their inverses. | 
|  | * t=pushmat(t)		push matrix stack | 
|  | * t=popmat(t)		pop matrix stack | 
|  | * rot(t, a, axis)	multiply stack top by rotation | 
|  | * qrot(t, q)		multiply stack top by rotation, q is unit quaternion | 
|  | * scale(t, x, y, z)	multiply stack top by scale | 
|  | * move(t, x, y, z)	multiply stack top by translation | 
|  | * xform(t, m)		multiply stack top by m | 
|  | * ixform(t, m, inv)	multiply stack top by m.  inv is the inverse of m. | 
|  | * look(t, e, l, u)	multiply stack top by viewing transformation | 
|  | * persp(t, fov, n, f)	multiply stack top by perspective transformation | 
|  | * viewport(t, r, aspect) | 
|  | *			multiply stack top by window->viewport transformation. | 
|  | */ | 
|  | #include <u.h> | 
|  | #include <libc.h> | 
|  | #include <draw.h> | 
|  | #include <geometry.h> | 
|  | Space *pushmat(Space *t){ | 
|  | Space *v; | 
|  | v=malloc(sizeof(Space)); | 
|  | if(t==0){ | 
|  | ident(v->t); | 
|  | ident(v->tinv); | 
|  | } | 
|  | else | 
|  | *v=*t; | 
|  | v->next=t; | 
|  | return v; | 
|  | } | 
|  | Space *popmat(Space *t){ | 
|  | Space *v; | 
|  | if(t==0) return 0; | 
|  | v=t->next; | 
|  | free(t); | 
|  | return v; | 
|  | } | 
|  | void rot(Space *t, double theta, int axis){ | 
|  | double s=sin(radians(theta)), c=cos(radians(theta)); | 
|  | Matrix m, inv; | 
|  | int i=(axis+1)%3, j=(axis+2)%3; | 
|  | ident(m); | 
|  | m[i][i] = c; | 
|  | m[i][j] = -s; | 
|  | m[j][i] = s; | 
|  | m[j][j] = c; | 
|  | ident(inv); | 
|  | inv[i][i] = c; | 
|  | inv[i][j] = s; | 
|  | inv[j][i] = -s; | 
|  | inv[j][j] = c; | 
|  | ixform(t, m, inv); | 
|  | } | 
|  | void qrot(Space *t, Quaternion q){ | 
|  | Matrix m, inv; | 
|  | int i, j; | 
|  | qtom(m, q); | 
|  | for(i=0;i!=4;i++) for(j=0;j!=4;j++) inv[i][j]=m[j][i]; | 
|  | ixform(t, m, inv); | 
|  | } | 
|  | void scale(Space *t, double x, double y, double z){ | 
|  | Matrix m, inv; | 
|  | ident(m); | 
|  | m[0][0]=x; | 
|  | m[1][1]=y; | 
|  | m[2][2]=z; | 
|  | ident(inv); | 
|  | inv[0][0]=1/x; | 
|  | inv[1][1]=1/y; | 
|  | inv[2][2]=1/z; | 
|  | ixform(t, m, inv); | 
|  | } | 
|  | void move(Space *t, double x, double y, double z){ | 
|  | Matrix m, inv; | 
|  | ident(m); | 
|  | m[0][3]=x; | 
|  | m[1][3]=y; | 
|  | m[2][3]=z; | 
|  | ident(inv); | 
|  | inv[0][3]=-x; | 
|  | inv[1][3]=-y; | 
|  | inv[2][3]=-z; | 
|  | ixform(t, m, inv); | 
|  | } | 
|  | void xform(Space *t, Matrix m){ | 
|  | Matrix inv; | 
|  | if(invertmat(m, inv)==0) return; | 
|  | ixform(t, m, inv); | 
|  | } | 
|  | void ixform(Space *t, Matrix m, Matrix inv){ | 
|  | matmul(t->t, m); | 
|  | matmulr(t->tinv, inv); | 
|  | } | 
|  | /* | 
|  | * multiply the top of the matrix stack by a view-pointing transformation | 
|  | * with the eyepoint at e, looking at point l, with u at the top of the screen. | 
|  | * The coordinate system is deemed to be right-handed. | 
|  | * The generated transformation transforms this view into a view from | 
|  | * the origin, looking in the positive y direction, with the z axis pointing up, | 
|  | * and x to the right. | 
|  | */ | 
|  | void look(Space *t, Point3 e, Point3 l, Point3 u){ | 
|  | Matrix m, inv; | 
|  | Point3 r; | 
|  | l=unit3(sub3(l, e)); | 
|  | u=unit3(vrem3(sub3(u, e), l)); | 
|  | r=cross3(l, u); | 
|  | /* make the matrix to transform from (rlu) space to (xyz) space */ | 
|  | ident(m); | 
|  | m[0][0]=r.x; m[0][1]=r.y; m[0][2]=r.z; | 
|  | m[1][0]=l.x; m[1][1]=l.y; m[1][2]=l.z; | 
|  | m[2][0]=u.x; m[2][1]=u.y; m[2][2]=u.z; | 
|  | ident(inv); | 
|  | inv[0][0]=r.x; inv[0][1]=l.x; inv[0][2]=u.x; | 
|  | inv[1][0]=r.y; inv[1][1]=l.y; inv[1][2]=u.y; | 
|  | inv[2][0]=r.z; inv[2][1]=l.z; inv[2][2]=u.z; | 
|  | ixform(t, m, inv); | 
|  | move(t, -e.x, -e.y, -e.z); | 
|  | } | 
|  | /* | 
|  | * generate a transformation that maps the frustum with apex at the origin, | 
|  | * apex angle=fov and clipping planes y=n and y=f into the double-unit cube. | 
|  | * plane y=n maps to y'=-1, y=f maps to y'=1 | 
|  | */ | 
|  | int persp(Space *t, double fov, double n, double f){ | 
|  | Matrix m; | 
|  | double z; | 
|  | if(n<=0 || f<=n || fov<=0 || 180<=fov) /* really need f!=n && sin(v)!=0 */ | 
|  | return -1; | 
|  | z=1/tan(radians(fov)/2); | 
|  | m[0][0]=z; m[0][1]=0;           m[0][2]=0; m[0][3]=0; | 
|  | m[1][0]=0; m[1][1]=(f+n)/(f-n); m[1][2]=0; m[1][3]=f*(1-m[1][1]); | 
|  | m[2][0]=0; m[2][1]=0;           m[2][2]=z; m[2][3]=0; | 
|  | m[3][0]=0; m[3][1]=1;           m[3][2]=0; m[3][3]=0; | 
|  | xform(t, m); | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * Map the unit-cube window into the given screen viewport. | 
|  | * r has min at the top left, max just outside the lower right.  Aspect is the | 
|  | * aspect ratio (dx/dy) of the viewport's pixels (not of the whole viewport!) | 
|  | * The whole window is transformed to fit centered inside the viewport with equal | 
|  | * slop on either top and bottom or left and right, depending on the viewport's | 
|  | * aspect ratio. | 
|  | * The window is viewed down the y axis, with x to the left and z up.  The viewport | 
|  | * has x increasing to the right and y increasing down.  The window's y coordinates | 
|  | * are mapped, unchanged, into the viewport's z coordinates. | 
|  | */ | 
|  | void viewport(Space *t, Rectangle r, double aspect){ | 
|  | Matrix m; | 
|  | double xc, yc, wid, hgt, scale; | 
|  | xc=.5*(r.min.x+r.max.x); | 
|  | yc=.5*(r.min.y+r.max.y); | 
|  | wid=(r.max.x-r.min.x)*aspect; | 
|  | hgt=r.max.y-r.min.y; | 
|  | scale=.5*(wid<hgt?wid:hgt); | 
|  | ident(m); | 
|  | m[0][0]=scale; | 
|  | m[0][3]=xc; | 
|  | m[1][1]=0; | 
|  | m[1][2]=-scale; | 
|  | m[1][3]=yc; | 
|  | m[2][1]=1; | 
|  | m[2][2]=0; | 
|  | /* should get inverse by hand */ | 
|  | xform(t, m); | 
|  | } |