| /*% cc -gpc % |
| * These transformation routines maintain stacks of transformations |
| * and their inverses. |
| * t=pushmat(t) push matrix stack |
| * t=popmat(t) pop matrix stack |
| * rot(t, a, axis) multiply stack top by rotation |
| * qrot(t, q) multiply stack top by rotation, q is unit quaternion |
| * scale(t, x, y, z) multiply stack top by scale |
| * move(t, x, y, z) multiply stack top by translation |
| * xform(t, m) multiply stack top by m |
| * ixform(t, m, inv) multiply stack top by m. inv is the inverse of m. |
| * look(t, e, l, u) multiply stack top by viewing transformation |
| * persp(t, fov, n, f) multiply stack top by perspective transformation |
| * viewport(t, r, aspect) |
| * multiply stack top by window->viewport transformation. |
| */ |
| #include <u.h> |
| #include <libc.h> |
| #include <draw.h> |
| #include <geometry.h> |
| Space *pushmat(Space *t){ |
| Space *v; |
| v=malloc(sizeof(Space)); |
| if(t==0){ |
| ident(v->t); |
| ident(v->tinv); |
| } |
| else |
| *v=*t; |
| v->next=t; |
| return v; |
| } |
| Space *popmat(Space *t){ |
| Space *v; |
| if(t==0) return 0; |
| v=t->next; |
| free(t); |
| return v; |
| } |
| void rot(Space *t, double theta, int axis){ |
| double s=sin(radians(theta)), c=cos(radians(theta)); |
| Matrix m, inv; |
| int i=(axis+1)%3, j=(axis+2)%3; |
| ident(m); |
| m[i][i] = c; |
| m[i][j] = -s; |
| m[j][i] = s; |
| m[j][j] = c; |
| ident(inv); |
| inv[i][i] = c; |
| inv[i][j] = s; |
| inv[j][i] = -s; |
| inv[j][j] = c; |
| ixform(t, m, inv); |
| } |
| void qrot(Space *t, Quaternion q){ |
| Matrix m, inv; |
| int i, j; |
| qtom(m, q); |
| for(i=0;i!=4;i++) for(j=0;j!=4;j++) inv[i][j]=m[j][i]; |
| ixform(t, m, inv); |
| } |
| void scale(Space *t, double x, double y, double z){ |
| Matrix m, inv; |
| ident(m); |
| m[0][0]=x; |
| m[1][1]=y; |
| m[2][2]=z; |
| ident(inv); |
| inv[0][0]=1/x; |
| inv[1][1]=1/y; |
| inv[2][2]=1/z; |
| ixform(t, m, inv); |
| } |
| void move(Space *t, double x, double y, double z){ |
| Matrix m, inv; |
| ident(m); |
| m[0][3]=x; |
| m[1][3]=y; |
| m[2][3]=z; |
| ident(inv); |
| inv[0][3]=-x; |
| inv[1][3]=-y; |
| inv[2][3]=-z; |
| ixform(t, m, inv); |
| } |
| void xform(Space *t, Matrix m){ |
| Matrix inv; |
| if(invertmat(m, inv)==0) return; |
| ixform(t, m, inv); |
| } |
| void ixform(Space *t, Matrix m, Matrix inv){ |
| matmul(t->t, m); |
| matmulr(t->tinv, inv); |
| } |
| /* |
| * multiply the top of the matrix stack by a view-pointing transformation |
| * with the eyepoint at e, looking at point l, with u at the top of the screen. |
| * The coordinate system is deemed to be right-handed. |
| * The generated transformation transforms this view into a view from |
| * the origin, looking in the positive y direction, with the z axis pointing up, |
| * and x to the right. |
| */ |
| void look(Space *t, Point3 e, Point3 l, Point3 u){ |
| Matrix m, inv; |
| Point3 r; |
| l=unit3(sub3(l, e)); |
| u=unit3(vrem3(sub3(u, e), l)); |
| r=cross3(l, u); |
| /* make the matrix to transform from (rlu) space to (xyz) space */ |
| ident(m); |
| m[0][0]=r.x; m[0][1]=r.y; m[0][2]=r.z; |
| m[1][0]=l.x; m[1][1]=l.y; m[1][2]=l.z; |
| m[2][0]=u.x; m[2][1]=u.y; m[2][2]=u.z; |
| ident(inv); |
| inv[0][0]=r.x; inv[0][1]=l.x; inv[0][2]=u.x; |
| inv[1][0]=r.y; inv[1][1]=l.y; inv[1][2]=u.y; |
| inv[2][0]=r.z; inv[2][1]=l.z; inv[2][2]=u.z; |
| ixform(t, m, inv); |
| move(t, -e.x, -e.y, -e.z); |
| } |
| /* |
| * generate a transformation that maps the frustum with apex at the origin, |
| * apex angle=fov and clipping planes y=n and y=f into the double-unit cube. |
| * plane y=n maps to y'=-1, y=f maps to y'=1 |
| */ |
| int persp(Space *t, double fov, double n, double f){ |
| Matrix m; |
| double z; |
| if(n<=0 || f<=n || fov<=0 || 180<=fov) /* really need f!=n && sin(v)!=0 */ |
| return -1; |
| z=1/tan(radians(fov)/2); |
| m[0][0]=z; m[0][1]=0; m[0][2]=0; m[0][3]=0; |
| m[1][0]=0; m[1][1]=(f+n)/(f-n); m[1][2]=0; m[1][3]=f*(1-m[1][1]); |
| m[2][0]=0; m[2][1]=0; m[2][2]=z; m[2][3]=0; |
| m[3][0]=0; m[3][1]=1; m[3][2]=0; m[3][3]=0; |
| xform(t, m); |
| return 0; |
| } |
| /* |
| * Map the unit-cube window into the given screen viewport. |
| * r has min at the top left, max just outside the lower right. Aspect is the |
| * aspect ratio (dx/dy) of the viewport's pixels (not of the whole viewport!) |
| * The whole window is transformed to fit centered inside the viewport with equal |
| * slop on either top and bottom or left and right, depending on the viewport's |
| * aspect ratio. |
| * The window is viewed down the y axis, with x to the left and z up. The viewport |
| * has x increasing to the right and y increasing down. The window's y coordinates |
| * are mapped, unchanged, into the viewport's z coordinates. |
| */ |
| void viewport(Space *t, Rectangle r, double aspect){ |
| Matrix m; |
| double xc, yc, wid, hgt, scale; |
| xc=.5*(r.min.x+r.max.x); |
| yc=.5*(r.min.y+r.max.y); |
| wid=(r.max.x-r.min.x)*aspect; |
| hgt=r.max.y-r.min.y; |
| scale=.5*(wid<hgt?wid:hgt); |
| ident(m); |
| m[0][0]=scale; |
| m[0][3]=xc; |
| m[1][1]=0; |
| m[1][2]=-scale; |
| m[1][3]=yc; |
| m[2][1]=1; |
| m[2][2]=0; |
| /* should get inverse by hand */ |
| xform(t, m); |
| } |