| #include <u.h> |
| #include <libc.h> |
| #include <draw.h> |
| #include <geometry.h> |
| /* |
| * Routines whose names end in 3 work on points in Affine 3-space. |
| * They ignore w in all arguments and produce w=1 in all results. |
| * Routines whose names end in 4 work on points in Projective 3-space. |
| */ |
| Point3 add3(Point3 a, Point3 b){ |
| a.x+=b.x; |
| a.y+=b.y; |
| a.z+=b.z; |
| a.w=1.; |
| return a; |
| } |
| Point3 sub3(Point3 a, Point3 b){ |
| a.x-=b.x; |
| a.y-=b.y; |
| a.z-=b.z; |
| a.w=1.; |
| return a; |
| } |
| Point3 neg3(Point3 a){ |
| a.x=-a.x; |
| a.y=-a.y; |
| a.z=-a.z; |
| a.w=1.; |
| return a; |
| } |
| Point3 div3(Point3 a, double b){ |
| a.x/=b; |
| a.y/=b; |
| a.z/=b; |
| a.w=1.; |
| return a; |
| } |
| Point3 mul3(Point3 a, double b){ |
| a.x*=b; |
| a.y*=b; |
| a.z*=b; |
| a.w=1.; |
| return a; |
| } |
| int eqpt3(Point3 p, Point3 q){ |
| return p.x==q.x && p.y==q.y && p.z==q.z; |
| } |
| /* |
| * Are these points closer than eps, in a relative sense |
| */ |
| int closept3(Point3 p, Point3 q, double eps){ |
| return 2.*dist3(p, q)<eps*(len3(p)+len3(q)); |
| } |
| double dot3(Point3 p, Point3 q){ |
| return p.x*q.x+p.y*q.y+p.z*q.z; |
| } |
| Point3 cross3(Point3 p, Point3 q){ |
| Point3 r; |
| r.x=p.y*q.z-p.z*q.y; |
| r.y=p.z*q.x-p.x*q.z; |
| r.z=p.x*q.y-p.y*q.x; |
| r.w=1.; |
| return r; |
| } |
| double len3(Point3 p){ |
| return sqrt(p.x*p.x+p.y*p.y+p.z*p.z); |
| } |
| double dist3(Point3 p, Point3 q){ |
| p.x-=q.x; |
| p.y-=q.y; |
| p.z-=q.z; |
| return sqrt(p.x*p.x+p.y*p.y+p.z*p.z); |
| } |
| Point3 unit3(Point3 p){ |
| double len=sqrt(p.x*p.x+p.y*p.y+p.z*p.z); |
| p.x/=len; |
| p.y/=len; |
| p.z/=len; |
| p.w=1.; |
| return p; |
| } |
| Point3 midpt3(Point3 p, Point3 q){ |
| p.x=.5*(p.x+q.x); |
| p.y=.5*(p.y+q.y); |
| p.z=.5*(p.z+q.z); |
| p.w=1.; |
| return p; |
| } |
| Point3 lerp3(Point3 p, Point3 q, double alpha){ |
| p.x+=(q.x-p.x)*alpha; |
| p.y+=(q.y-p.y)*alpha; |
| p.z+=(q.z-p.z)*alpha; |
| p.w=1.; |
| return p; |
| } |
| /* |
| * Reflect point p in the line joining p0 and p1 |
| */ |
| Point3 reflect3(Point3 p, Point3 p0, Point3 p1){ |
| Point3 a, b; |
| a=sub3(p, p0); |
| b=sub3(p1, p0); |
| return add3(a, mul3(b, 2*dot3(a, b)/dot3(b, b))); |
| } |
| /* |
| * Return the nearest point on segment [p0,p1] to point testp |
| */ |
| Point3 nearseg3(Point3 p0, Point3 p1, Point3 testp){ |
| double num, den; |
| Point3 q, r; |
| q=sub3(p1, p0); |
| r=sub3(testp, p0); |
| num=dot3(q, r);; |
| if(num<=0) return p0; |
| den=dot3(q, q); |
| if(num>=den) return p1; |
| return add3(p0, mul3(q, num/den)); |
| } |
| /* |
| * distance from point p to segment [p0,p1] |
| */ |
| #define SMALL 1e-8 /* what should this value be? */ |
| double pldist3(Point3 p, Point3 p0, Point3 p1){ |
| Point3 d, e; |
| double dd, de, dsq; |
| d=sub3(p1, p0); |
| e=sub3(p, p0); |
| dd=dot3(d, d); |
| de=dot3(d, e); |
| if(dd<SMALL*SMALL) return len3(e); |
| dsq=dot3(e, e)-de*de/dd; |
| if(dsq<SMALL*SMALL) return 0; |
| return sqrt(dsq); |
| } |
| /* |
| * vdiv3(a, b) is the magnitude of the projection of a onto b |
| * measured in units of the length of b. |
| * vrem3(a, b) is the component of a perpendicular to b. |
| */ |
| double vdiv3(Point3 a, Point3 b){ |
| return (a.x*b.x+a.y*b.y+a.z*b.z)/(b.x*b.x+b.y*b.y+b.z*b.z); |
| } |
| Point3 vrem3(Point3 a, Point3 b){ |
| double quo=(a.x*b.x+a.y*b.y+a.z*b.z)/(b.x*b.x+b.y*b.y+b.z*b.z); |
| a.x-=b.x*quo; |
| a.y-=b.y*quo; |
| a.z-=b.z*quo; |
| a.w=1.; |
| return a; |
| } |
| /* |
| * Compute face (plane) with given normal, containing a given point |
| */ |
| Point3 pn2f3(Point3 p, Point3 n){ |
| n.w=-dot3(p, n); |
| return n; |
| } |
| /* |
| * Compute face containing three points |
| */ |
| Point3 ppp2f3(Point3 p0, Point3 p1, Point3 p2){ |
| Point3 p01, p02; |
| p01=sub3(p1, p0); |
| p02=sub3(p2, p0); |
| return pn2f3(p0, cross3(p01, p02)); |
| } |
| /* |
| * Compute point common to three faces. |
| * Cramer's rule, yuk. |
| */ |
| Point3 fff2p3(Point3 f0, Point3 f1, Point3 f2){ |
| double det; |
| Point3 p; |
| det=dot3(f0, cross3(f1, f2)); |
| if(fabs(det)<SMALL){ /* parallel planes, bogus answer */ |
| p.x=0.; |
| p.y=0.; |
| p.z=0.; |
| p.w=0.; |
| return p; |
| } |
| p.x=(f0.w*(f2.y*f1.z-f1.y*f2.z) |
| +f1.w*(f0.y*f2.z-f2.y*f0.z)+f2.w*(f1.y*f0.z-f0.y*f1.z))/det; |
| p.y=(f0.w*(f2.z*f1.x-f1.z*f2.x) |
| +f1.w*(f0.z*f2.x-f2.z*f0.x)+f2.w*(f1.z*f0.x-f0.z*f1.x))/det; |
| p.z=(f0.w*(f2.x*f1.y-f1.x*f2.y) |
| +f1.w*(f0.x*f2.y-f2.x*f0.y)+f2.w*(f1.x*f0.y-f0.x*f1.y))/det; |
| p.w=1.; |
| return p; |
| } |
| /* |
| * pdiv4 does perspective division to convert a projective point to affine coordinates. |
| */ |
| Point3 pdiv4(Point3 a){ |
| if(a.w==0) return a; |
| a.x/=a.w; |
| a.y/=a.w; |
| a.z/=a.w; |
| a.w=1.; |
| return a; |
| } |
| Point3 add4(Point3 a, Point3 b){ |
| a.x+=b.x; |
| a.y+=b.y; |
| a.z+=b.z; |
| a.w+=b.w; |
| return a; |
| } |
| Point3 sub4(Point3 a, Point3 b){ |
| a.x-=b.x; |
| a.y-=b.y; |
| a.z-=b.z; |
| a.w-=b.w; |
| return a; |
| } |