| #include <u.h> |
| #include <libc.h> |
| #include <draw.h> |
| #include <memdraw.h> |
| |
| enum |
| { |
| Arrow1 = 8, |
| Arrow2 = 10, |
| Arrow3 = 3 |
| }; |
| |
| /* |
| static |
| int |
| lmin(int a, int b) |
| { |
| if(a < b) |
| return a; |
| return b; |
| } |
| */ |
| |
| static |
| int |
| lmax(int a, int b) |
| { |
| if(a > b) |
| return a; |
| return b; |
| } |
| |
| #ifdef NOTUSED |
| /* |
| * Rather than line clip, we run the Bresenham loop over the full line, |
| * and clip on each pixel. This is more expensive but means that |
| * lines look the same regardless of how the windowing has tiled them. |
| * For speed, we check for clipping outside the loop and make the |
| * test easy when possible. |
| */ |
| |
| static |
| void |
| horline1(Memimage *dst, Point p0, Point p1, int srcval, Rectangle clipr) |
| { |
| int x, y, dy, deltay, deltax, maxx; |
| int dd, easy, e, bpp, m, m0; |
| uchar *d; |
| |
| deltax = p1.x - p0.x; |
| deltay = p1.y - p0.y; |
| dd = dst->width*sizeof(u32int); |
| dy = 1; |
| if(deltay < 0){ |
| dd = -dd; |
| deltay = -deltay; |
| dy = -1; |
| } |
| maxx = lmin(p1.x, clipr.max.x-1); |
| bpp = dst->depth; |
| m0 = 0xFF^(0xFF>>bpp); |
| m = m0 >> (p0.x&(7/dst->depth))*bpp; |
| easy = ptinrect(p0, clipr) && ptinrect(p1, clipr); |
| e = 2*deltay - deltax; |
| y = p0.y; |
| d = byteaddr(dst, p0); |
| deltay *= 2; |
| deltax = deltay - 2*deltax; |
| for(x=p0.x; x<=maxx; x++){ |
| if(easy || (clipr.min.x<=x && clipr.min.y<=y && y<clipr.max.y)) |
| *d ^= (*d^srcval) & m; |
| if(e > 0){ |
| y += dy; |
| d += dd; |
| e += deltax; |
| }else |
| e += deltay; |
| d++; |
| m >>= bpp; |
| if(m == 0) |
| m = m0; |
| } |
| } |
| |
| static |
| void |
| verline1(Memimage *dst, Point p0, Point p1, int srcval, Rectangle clipr) |
| { |
| int x, y, deltay, deltax, maxy; |
| int easy, e, bpp, m, m0, dd; |
| uchar *d; |
| |
| deltax = p1.x - p0.x; |
| deltay = p1.y - p0.y; |
| dd = 1; |
| if(deltax < 0){ |
| dd = -1; |
| deltax = -deltax; |
| } |
| maxy = lmin(p1.y, clipr.max.y-1); |
| bpp = dst->depth; |
| m0 = 0xFF^(0xFF>>bpp); |
| m = m0 >> (p0.x&(7/dst->depth))*bpp; |
| easy = ptinrect(p0, clipr) && ptinrect(p1, clipr); |
| e = 2*deltax - deltay; |
| x = p0.x; |
| d = byteaddr(dst, p0); |
| deltax *= 2; |
| deltay = deltax - 2*deltay; |
| for(y=p0.y; y<=maxy; y++){ |
| if(easy || (clipr.min.y<=y && clipr.min.x<=x && x<clipr.max.x)) |
| *d ^= (*d^srcval) & m; |
| if(e > 0){ |
| x += dd; |
| d += dd; |
| e += deltay; |
| }else |
| e += deltax; |
| d += dst->width*sizeof(u32int); |
| m >>= bpp; |
| if(m == 0) |
| m = m0; |
| } |
| } |
| |
| static |
| void |
| horliner(Memimage *dst, Point p0, Point p1, Memimage *src, Point dsrc, Rectangle clipr) |
| { |
| int x, y, sx, sy, deltay, deltax, minx, maxx; |
| int bpp, m, m0; |
| uchar *d, *s; |
| |
| deltax = p1.x - p0.x; |
| deltay = p1.y - p0.y; |
| sx = drawreplxy(src->r.min.x, src->r.max.x, p0.x+dsrc.x); |
| minx = lmax(p0.x, clipr.min.x); |
| maxx = lmin(p1.x, clipr.max.x-1); |
| bpp = dst->depth; |
| m0 = 0xFF^(0xFF>>bpp); |
| m = m0 >> (minx&(7/dst->depth))*bpp; |
| for(x=minx; x<=maxx; x++){ |
| y = p0.y + (deltay*(x-p0.x)+deltax/2)/deltax; |
| if(clipr.min.y<=y && y<clipr.max.y){ |
| d = byteaddr(dst, Pt(x, y)); |
| sy = drawreplxy(src->r.min.y, src->r.max.y, y+dsrc.y); |
| s = byteaddr(src, Pt(sx, sy)); |
| *d ^= (*d^*s) & m; |
| } |
| if(++sx >= src->r.max.x) |
| sx = src->r.min.x; |
| m >>= bpp; |
| if(m == 0) |
| m = m0; |
| } |
| } |
| |
| static |
| void |
| verliner(Memimage *dst, Point p0, Point p1, Memimage *src, Point dsrc, Rectangle clipr) |
| { |
| int x, y, sx, sy, deltay, deltax, miny, maxy; |
| int bpp, m, m0; |
| uchar *d, *s; |
| |
| deltax = p1.x - p0.x; |
| deltay = p1.y - p0.y; |
| sy = drawreplxy(src->r.min.y, src->r.max.y, p0.y+dsrc.y); |
| miny = lmax(p0.y, clipr.min.y); |
| maxy = lmin(p1.y, clipr.max.y-1); |
| bpp = dst->depth; |
| m0 = 0xFF^(0xFF>>bpp); |
| for(y=miny; y<=maxy; y++){ |
| if(deltay == 0) /* degenerate line */ |
| x = p0.x; |
| else |
| x = p0.x + (deltax*(y-p0.y)+deltay/2)/deltay; |
| if(clipr.min.x<=x && x<clipr.max.x){ |
| m = m0 >> (x&(7/dst->depth))*bpp; |
| d = byteaddr(dst, Pt(x, y)); |
| sx = drawreplxy(src->r.min.x, src->r.max.x, x+dsrc.x); |
| s = byteaddr(src, Pt(sx, sy)); |
| *d ^= (*d^*s) & m; |
| } |
| if(++sy >= src->r.max.y) |
| sy = src->r.min.y; |
| } |
| } |
| |
| static |
| void |
| horline(Memimage *dst, Point p0, Point p1, Memimage *src, Point dsrc, Rectangle clipr) |
| { |
| int x, y, deltay, deltax, minx, maxx; |
| int bpp, m, m0; |
| uchar *d, *s; |
| |
| deltax = p1.x - p0.x; |
| deltay = p1.y - p0.y; |
| minx = lmax(p0.x, clipr.min.x); |
| maxx = lmin(p1.x, clipr.max.x-1); |
| bpp = dst->depth; |
| m0 = 0xFF^(0xFF>>bpp); |
| m = m0 >> (minx&(7/dst->depth))*bpp; |
| for(x=minx; x<=maxx; x++){ |
| y = p0.y + (deltay*(x-p0.x)+deltay/2)/deltax; |
| if(clipr.min.y<=y && y<clipr.max.y){ |
| d = byteaddr(dst, Pt(x, y)); |
| s = byteaddr(src, addpt(dsrc, Pt(x, y))); |
| *d ^= (*d^*s) & m; |
| } |
| m >>= bpp; |
| if(m == 0) |
| m = m0; |
| } |
| } |
| |
| static |
| void |
| verline(Memimage *dst, Point p0, Point p1, Memimage *src, Point dsrc, Rectangle clipr) |
| { |
| int x, y, deltay, deltax, miny, maxy; |
| int bpp, m, m0; |
| uchar *d, *s; |
| |
| deltax = p1.x - p0.x; |
| deltay = p1.y - p0.y; |
| miny = lmax(p0.y, clipr.min.y); |
| maxy = lmin(p1.y, clipr.max.y-1); |
| bpp = dst->depth; |
| m0 = 0xFF^(0xFF>>bpp); |
| for(y=miny; y<=maxy; y++){ |
| if(deltay == 0) /* degenerate line */ |
| x = p0.x; |
| else |
| x = p0.x + deltax*(y-p0.y)/deltay; |
| if(clipr.min.x<=x && x<clipr.max.x){ |
| m = m0 >> (x&(7/dst->depth))*bpp; |
| d = byteaddr(dst, Pt(x, y)); |
| s = byteaddr(src, addpt(dsrc, Pt(x, y))); |
| *d ^= (*d^*s) & m; |
| } |
| } |
| } |
| #endif /* NOTUSED */ |
| |
| static Memimage* |
| membrush(int radius) |
| { |
| static Memimage *brush; |
| static int brushradius; |
| |
| if(brush==nil || brushradius!=radius){ |
| freememimage(brush); |
| brush = allocmemimage(Rect(0, 0, 2*radius+1, 2*radius+1), memopaque->chan); |
| if(brush != nil){ |
| memfillcolor(brush, DTransparent); /* zeros */ |
| memellipse(brush, Pt(radius, radius), radius, radius, -1, memopaque, Pt(radius, radius), S); |
| } |
| brushradius = radius; |
| } |
| return brush; |
| } |
| |
| static |
| void |
| discend(Point p, int radius, Memimage *dst, Memimage *src, Point dsrc, int op) |
| { |
| Memimage *disc; |
| Rectangle r; |
| |
| disc = membrush(radius); |
| if(disc != nil){ |
| r.min.x = p.x - radius; |
| r.min.y = p.y - radius; |
| r.max.x = p.x + radius+1; |
| r.max.y = p.y + radius+1; |
| memdraw(dst, r, src, addpt(r.min, dsrc), disc, Pt(0,0), op); |
| } |
| } |
| |
| static |
| void |
| arrowend(Point tip, Point *pp, int end, int sin, int cos, int radius) |
| { |
| int x1, x2, x3; |
| |
| /* before rotation */ |
| if(end == Endarrow){ |
| x1 = Arrow1; |
| x2 = Arrow2; |
| x3 = Arrow3; |
| }else{ |
| x1 = (end>>5) & 0x1FF; /* distance along line from end of line to tip */ |
| x2 = (end>>14) & 0x1FF; /* distance along line from barb to tip */ |
| x3 = (end>>23) & 0x1FF; /* distance perpendicular from edge of line to barb */ |
| } |
| |
| /* comments follow track of right-facing arrowhead */ |
| pp->x = tip.x+((2*radius+1)*sin/2-x1*cos); /* upper side of shaft */ |
| pp->y = tip.y-((2*radius+1)*cos/2+x1*sin); |
| pp++; |
| pp->x = tip.x+((2*radius+2*x3+1)*sin/2-x2*cos); /* upper barb */ |
| pp->y = tip.y-((2*radius+2*x3+1)*cos/2+x2*sin); |
| pp++; |
| pp->x = tip.x; |
| pp->y = tip.y; |
| pp++; |
| pp->x = tip.x+(-(2*radius+2*x3+1)*sin/2-x2*cos); /* lower barb */ |
| pp->y = tip.y-(-(2*radius+2*x3+1)*cos/2+x2*sin); |
| pp++; |
| pp->x = tip.x+(-(2*radius+1)*sin/2-x1*cos); /* lower side of shaft */ |
| pp->y = tip.y+((2*radius+1)*cos/2-x1*sin); |
| } |
| |
| void |
| _memimageline(Memimage *dst, Point p0, Point p1, int end0, int end1, int radius, Memimage *src, Point sp, Rectangle clipr, int op) |
| { |
| /* |
| * BUG: We should really really pick off purely horizontal and purely |
| * vertical lines and handle them separately with calls to memimagedraw |
| * on rectangles. |
| */ |
| |
| int hor; |
| int sin, cos, dx, dy, t; |
| Rectangle oclipr, r; |
| Point q, pts[10], *pp, d; |
| |
| if(radius < 0) |
| return; |
| if(rectclip(&clipr, dst->r) == 0) |
| return; |
| if(rectclip(&clipr, dst->clipr) == 0) |
| return; |
| d = subpt(sp, p0); |
| if(rectclip(&clipr, rectsubpt(src->clipr, d)) == 0) |
| return; |
| if((src->flags&Frepl)==0 && rectclip(&clipr, rectsubpt(src->r, d))==0) |
| return; |
| /* this means that only verline() handles degenerate lines (p0==p1) */ |
| hor = (abs(p1.x-p0.x) > abs(p1.y-p0.y)); |
| /* |
| * Clipping is a little peculiar. We can't use Sutherland-Cohen |
| * clipping because lines are wide. But this is probably just fine: |
| * we do all math with the original p0 and p1, but clip when deciding |
| * what pixels to draw. This means the layer code can call this routine, |
| * using clipr to define the region being written, and get the same set |
| * of pixels regardless of the dicing. |
| */ |
| if((hor && p0.x>p1.x) || (!hor && p0.y>p1.y)){ |
| q = p0; |
| p0 = p1; |
| p1 = q; |
| t = end0; |
| end0 = end1; |
| end1 = t; |
| } |
| |
| if((p0.x == p1.x || p0.y == p1.y) && (end0&0x1F) == Endsquare && (end1&0x1F) == Endsquare){ |
| r.min = p0; |
| r.max = p1; |
| if(p0.x == p1.x){ |
| r.min.x -= radius; |
| r.max.x += radius+1; |
| } |
| else{ |
| r.min.y -= radius; |
| r.max.y += radius+1; |
| } |
| oclipr = dst->clipr; |
| dst->clipr = clipr; |
| memimagedraw(dst, r, src, sp, memopaque, sp, op); |
| dst->clipr = oclipr; |
| return; |
| } |
| |
| /* Hard: */ |
| /* draw thick line using polygon fill */ |
| icossin2(p1.x-p0.x, p1.y-p0.y, &cos, &sin); |
| dx = (sin*(2*radius+1))/2; |
| dy = (cos*(2*radius+1))/2; |
| pp = pts; |
| oclipr = dst->clipr; |
| dst->clipr = clipr; |
| q.x = ICOSSCALE*p0.x+ICOSSCALE/2-cos/2; |
| q.y = ICOSSCALE*p0.y+ICOSSCALE/2-sin/2; |
| switch(end0 & 0x1F){ |
| case Enddisc: |
| discend(p0, radius, dst, src, d, op); |
| /* fall through */ |
| case Endsquare: |
| default: |
| pp->x = q.x-dx; |
| pp->y = q.y+dy; |
| pp++; |
| pp->x = q.x+dx; |
| pp->y = q.y-dy; |
| pp++; |
| break; |
| case Endarrow: |
| arrowend(q, pp, end0, -sin, -cos, radius); |
| _memfillpolysc(dst, pts, 5, ~0, src, addpt(pts[0], mulpt(d, ICOSSCALE)), 1, 10, 1, op); |
| pp[1] = pp[4]; |
| pp += 2; |
| } |
| q.x = ICOSSCALE*p1.x+ICOSSCALE/2+cos/2; |
| q.y = ICOSSCALE*p1.y+ICOSSCALE/2+sin/2; |
| switch(end1 & 0x1F){ |
| case Enddisc: |
| discend(p1, radius, dst, src, d, op); |
| /* fall through */ |
| case Endsquare: |
| default: |
| pp->x = q.x+dx; |
| pp->y = q.y-dy; |
| pp++; |
| pp->x = q.x-dx; |
| pp->y = q.y+dy; |
| pp++; |
| break; |
| case Endarrow: |
| arrowend(q, pp, end1, sin, cos, radius); |
| _memfillpolysc(dst, pp, 5, ~0, src, addpt(pts[0], mulpt(d, ICOSSCALE)), 1, 10, 1, op); |
| pp[1] = pp[4]; |
| pp += 2; |
| } |
| _memfillpolysc(dst, pts, pp-pts, ~0, src, addpt(pts[0], mulpt(d, ICOSSCALE)), 0, 10, 1, op); |
| dst->clipr = oclipr; |
| return; |
| } |
| |
| void |
| memimageline(Memimage *dst, Point p0, Point p1, int end0, int end1, int radius, Memimage *src, Point sp, int op) |
| { |
| _memimageline(dst, p0, p1, end0, end1, radius, src, sp, dst->clipr, op); |
| } |
| |
| /* |
| * Simple-minded conservative code to compute bounding box of line. |
| * Result is probably a little larger than it needs to be. |
| */ |
| static |
| void |
| addbbox(Rectangle *r, Point p) |
| { |
| if(r->min.x > p.x) |
| r->min.x = p.x; |
| if(r->min.y > p.y) |
| r->min.y = p.y; |
| if(r->max.x < p.x+1) |
| r->max.x = p.x+1; |
| if(r->max.y < p.y+1) |
| r->max.y = p.y+1; |
| } |
| |
| int |
| memlineendsize(int end) |
| { |
| int x3; |
| |
| if((end&0x3F) != Endarrow) |
| return 0; |
| if(end == Endarrow) |
| x3 = Arrow3; |
| else |
| x3 = (end>>23) & 0x1FF; |
| return x3; |
| } |
| |
| Rectangle |
| memlinebbox(Point p0, Point p1, int end0, int end1, int radius) |
| { |
| Rectangle r, r1; |
| int extra; |
| |
| r.min.x = 10000000; |
| r.min.y = 10000000; |
| r.max.x = -10000000; |
| r.max.y = -10000000; |
| extra = lmax(memlineendsize(end0), memlineendsize(end1)); |
| r1 = insetrect(canonrect(Rpt(p0, p1)), -(radius+extra)); |
| addbbox(&r, r1.min); |
| addbbox(&r, r1.max); |
| return r; |
| } |