blob: 8bfd323dc5f81c9e3f89ff92d557f547b75caeef [file] [log] [blame]
allocimage, allocimagemix, freeimage, nameimage, namedimage, setalpha, loadimage, cloadimage, unloadimage, readimage, writeimage, bytesperline, wordsperline \- allocating, freeing, reading, writing images
#include <u.h>
#include <libc.h>
#include <draw.h>
.ta \w'\fLImage 'u
Image *allocimage(Display *d, Rectangle r,
ulong chan, int repl, int col)
Image *allocimagemix(Display *d, ulong one, ulong three)
void freeimage(Image *i)
int nameimage(Image *i, char *name, int in)
Image *namedimage(Display *d, char *name)
ulong setalpha(ulong color, uchar alpha)
int loadimage(Image *i, Rectangle r, uchar *data, int ndata)
int cloadimage(Image *i, Rectangle r, uchar *data, int ndata)
int unloadimage(Image *i, Rectangle r, uchar *data, int ndata)
Image *readimage(Display *d, int fd, int dolock)
int writeimage(int fd, Image *i, int dolock)
int bytesperline(Rectangle r, int d)
int wordsperline(Rectangle r, int d)
.ft L
.ta +4n +20
DOpaque = 0xFFFFFFFF,
DTransparent = 0x00000000,
DBlack = 0x000000FF,
DWhite = 0xFFFFFFFF,
DRed = 0xFF0000FF,
DGreen = 0x00FF00FF,
DBlue = 0x0000FFFF,
DCyan = 0x00FFFFFF,
DMagenta = 0xFF00FFFF,
DYellow = 0xFFFF00FF,
DPaleyellow = 0xFFFFAAFF,
DDarkyellow = 0xEEEE9EFF,
DDarkgreen = 0x448844FF,
DPalegreen = 0xAAFFAAFF,
DMedgreen = 0x88CC88FF,
DDarkblue = 0x000055FF,
DPalebluegreen = 0xAAFFFFFF,
DPaleblue = 0x0000BBFF,
DBluegreen = 0x008888FF,
DGreygreen = 0x55AAAAFF,
DPalegreygreen = 0x9EEEEEFF,
DYellowgreen = 0x99994CFF,
DMedblue = 0x000099FF,
DGreyblue = 0x005DBBFF,
DPalegreyblue = 0x4993DDFF,
DPurpleblue = 0x8888CCFF,
DNotacolor = 0xFFFFFF00,
DNofill = DNotacolor,
A new
.B Image
.B Display
.B d
is allocated with
.BR allocimage ;
it will have the rectangle, pixel channel format,
and replication flag
given by its arguments.
Convenient pixel channels like
.BR RGB16 ,
.BR RGB24 ,
are predefined.
All the new image's pixels will have initial value
.IR col .
.I col
.BR DNofill ,
no initialization is done.
Representative useful values of color are predefined:
.BR DBlack ,
.BR DWhite ,
.BR DRed ,
and so on.
Colors are specified by 32-bit numbers comprising,
from most to least significant byte,
8-bit values for red, green, blue, and alpha.
The values correspond to illumination, so 0 is black and 255 is white.
Similarly, for alpha 0 is transparent and 255 is opaque.
.I id
field will have been set to the identifying number used by
.B /dev/draw
.IR draw (3)),
and the
.I cache
field will be zero.
.I repl
is true, the clip rectangle is set to a very large region; if false, it is set to
.IR r .
.I depth
field will be set to the number of bits per pixel specified
by the channel descriptor
.IR image (7)).
.I Allocimage
returns 0 if the server has run out of image memory.
.I Allocimagemix
is used to allocate background colors.
On 8-bit color-mapped displays, it
returns a 2×2 replicated image with one pixel colored
the color
.I one
and the other three with
.IR three .
(This simulates a wider range of tones than can be represented by a single pixel
value on a color-mapped display.)
On true color displays, it returns a 1×1 replicated image
whose pixel is the result of mixing the two colors in
a one to three ratio.
.I Freeimage
frees the resources used by its argument image.
.I Nameimage
publishes in the server the image
.I i
under the given
.IR name .
.I in
is non-zero, the image is published; otherwise
.I i
must be already named
.I name
and it is withdrawn from publication.
.I Namedimage
returns a reference to the image published under the given
.I name
.B Display
.IR d .
These routines permit unrelated applications sharing a display to share an image;
for example they provide the mechanism behind
.B getwindow
.IR graphics (3)).
The RGB values in a color are
.I premultiplied
by the alpha value; for example, a 50% red is
.B 0x7F00007F
.BR 0xFF00007F .
The function
.I setalpha
performs the alpha computation on a given
.BR color ,
ignoring its initial alpha value, multiplying the components by the supplied
.BR alpha .
For example, to make a 50% red color value, one could execute
.B setalpha(DRed,
.BR 0x7F) .
The remaining functions deal with moving groups of pixel
values between image and user space or external files.
There is a fixed format for the exchange and storage of
image data
.IR image (7)).
.I Unloadimage
reads a rectangle of pixels from image
.I i
.IR data ,
whose length is specified by
.IR ndata .
It is an error if
.I ndata
is too small to accommodate the pixels.
.I Loadimage
replaces the specified rectangle in image
.I i
with the
.I ndata
bytes of
.IR data .
The pixels are presented one horizontal line at a time,
starting with the top-left pixel of
.IR r .
In the data processed by these routines, each scan line starts with a new byte in the array,
leaving the last byte of the previous line partially empty, if necessary.
Pixels are packed as tightly as possible within
.IR data ,
regardless of the rectangle being extracted.
Bytes are filled from most to least significant bit order,
as the
.I x
coordinate increases, aligned so
.IR x =0
would appear as the leftmost pixel of its byte.
Thus, for
.B depth
1, the pixel at
.I x
offset 165 within the rectangle will be in a
.I data
byte at bit-position
.B 0x04
regardless of the overall
rectangle: 165 mod 8 equals 5, and
.B "0x80\ >>\ 5"
.BR 0x04 .
.B Cloadimage
does the same as
.IR loadimage ,
but for
.I ndata
bytes of compressed image
.I data
.IR image (7)).
On each call to
.IR cloadimage,
.I data
must be at the beginning of a compressed data block, in particular,
it should start with the
.B y
coordinate and data length for the block.
.IR Loadimage ,
.IR cloadimage ,
.I unloadimage
return the number of bytes copied.
.I Readimage
creates an image from data contained in an external file (see
.IR image (7)
for the file format);
.I fd
is a file descriptor obtained by opening such a file for reading.
The returned image is allocated using
.IR allocimage .
.I dolock
flag specifies whether the
.B Display
should be synchronized for multithreaded access; single-threaded
programs can leave it zero.
.I Writeimage
writes image
.I i
onto file descriptor
.IR fd ,
which should be open for writing.
The format is as described for
.IR readimage .
.I Readimage
.I writeimage
do not close
.IR fd .
.I Bytesperline
.I wordsperline
return the number of bytes or words occupied in memory by one scan line of rectangle
.I r
in an image with
.I d
bits per pixel.
To allocate a single-pixel replicated image that may be used to paint a region red,
red = allocimage(display, Rect(0, 0, 1, 1), RGB24, 1, DRed);
.B \*9/src/libdraw
.IR graphics (3),
.IR draw (3),
.IR draw (3),
.IR image (7)
These functions return pointer 0 or integer \-1 on failure, usually due to insufficient
May set
.IR errstr .
.B Depth
must be a divisor or multiple of 8.