add libflate
diff --git a/src/libflate/deflate.c b/src/libflate/deflate.c
new file mode 100644
index 0000000..3a55af3
--- /dev/null
+++ b/src/libflate/deflate.c
@@ -0,0 +1,1359 @@
+#include <u.h>
+#include <libc.h>
+#include <flate.h>
+
+typedef struct Chain	Chain;
+typedef struct Chains	Chains;
+typedef struct Dyncode	Dyncode;
+typedef struct Huff	Huff;
+typedef struct LZblock	LZblock;
+typedef struct LZstate	LZstate;
+
+enum
+{
+	/*
+	 * deflate format paramaters
+	 */
+	DeflateUnc	= 0,			/* uncompressed block */
+	DeflateFix	= 1,			/* fixed huffman codes */
+	DeflateDyn	= 2,			/* dynamic huffman codes */
+
+	DeflateEob	= 256,			/* end of block code in lit/len book */
+	DeflateMaxBlock	= 64*1024-1,		/* maximum size of uncompressed block */
+
+	DeflateMaxExp	= 10,			/* maximum expansion for a block */
+
+	LenStart	= 257,			/* start of length codes in litlen */
+	Nlitlen		= 288,			/* number of litlen codes */
+	Noff		= 30,			/* number of offset codes */
+	Nclen		= 19,			/* number of codelen codes */
+
+	MaxOff		= 32*1024,
+	MinMatch	= 3,			/* shortest match possible */
+	MaxMatch	= 258,			/* longest match possible */
+
+	/*
+	 * huffman code paramaters
+	 */
+	MaxLeaf		= Nlitlen,
+	MaxHuffBits	= 16,			/* max bits in a huffman code */
+	ChainMem	= 2 * (MaxHuffBits - 1) * MaxHuffBits,
+
+	/*
+	 * coding of the lz parse
+	 */
+	LenFlag		= 1 << 3,
+	LenShift	= 4,			/* leaves enough space for MinMatchMaxOff */
+	MaxLitRun	= LenFlag - 1,
+
+	/*
+	 * internal lz paramaters
+	 */
+	DeflateOut	= 4096,			/* output buffer size */
+	BlockSize	= 8192,			/* attempted input read quanta */
+	DeflateBlock	= DeflateMaxBlock & ~(BlockSize - 1),
+	MinMatchMaxOff	= 4096,			/* max profitable offset for small match;
+						 * assumes 8 bits for len, 5+10 for offset
+						 * DONT CHANGE WITHOUT CHANGING LZPARSE CONSTANTS
+						 */
+	HistSlop	= 512,			/* must be at lead MaxMatch */
+	HistBlock	= 64*1024,
+	HistSize	= HistBlock + HistSlop,
+
+	HashLog		= 13,
+	HashSize	= 1<<HashLog,
+
+	MaxOffCode	= 256,			/* biggest offset looked up in direct table */
+
+	EstLitBits	= 8,
+	EstLenBits	= 4,
+	EstOffBits	= 5,
+};
+
+/*
+ * knuth vol. 3 multiplicative hashing
+ * each byte x chosen according to rules
+ * 1/4 < x < 3/10, 1/3 x < < 3/7, 4/7 < x < 2/3, 7/10 < x < 3/4
+ * with reasonable spread between the bytes & their complements
+ *
+ * the 3 byte value appears to be as almost good as the 4 byte value,
+ * and might be faster on some machines
+ */
+/*
+#define hashit(c)	(((ulong)(c) * 0x6b43a9) >> (24 - HashLog))
+*/
+#define hashit(c)	((((ulong)(c) & 0xffffff) * 0x6b43a9b5) >> (32 - HashLog))
+
+/*
+ * lempel-ziv style compression state
+ */
+struct LZstate
+{
+	uchar	hist[HistSize];
+	ulong	pos;				/* current location in history buffer */
+	ulong	avail;				/* data available after pos */
+	int	eof;
+	ushort	hash[HashSize];			/* hash chains */
+	ushort	nexts[MaxOff];
+	int	now;				/* pos in hash chains */
+	int	dot;				/* dawn of time in history */
+	int	prevlen;			/* lazy matching state */
+	int	prevoff;
+	int	maxcheck;			/* compressor tuning */
+
+	uchar	obuf[DeflateOut];
+	uchar	*out;				/* current position in the output buffer */
+	uchar	*eout;
+	ulong	bits;				/* bit shift register */
+	int	nbits;
+	int	rbad;				/* got an error reading the buffer */
+	int	wbad;				/* got an error writing the buffer */
+	int	(*w)(void*, void*, int);
+	void	*wr;
+
+	ulong	totr;				/* total input size */
+	ulong	totw;				/* total output size */
+	int	debug;
+};
+
+struct LZblock
+{
+	ushort	parse[DeflateMaxBlock / 2 + 1];
+	int	lastv;				/* value being constucted for parse */
+	ulong	litlencount[Nlitlen];
+	ulong	offcount[Noff];
+	ushort	*eparse;			/* limit for parse table */
+	int	bytes;				/* consumed from the input */
+	int	excost;				/* cost of encoding extra len & off bits */
+};
+
+/*
+ * huffman code table
+ */
+struct Huff
+{
+	short	bits;				/* length of the code */
+	ushort	encode;				/* the code */
+};
+
+/*
+ * encoding of dynamic huffman trees
+ */
+struct Dyncode
+{
+	int	nlit;
+	int	noff;
+	int	nclen;
+	int	ncode;
+	Huff	codetab[Nclen];
+	uchar	codes[Nlitlen+Noff];
+	uchar	codeaux[Nlitlen+Noff];
+};
+
+static	int	deflateb(LZstate *lz, LZblock *lzb, void *rr, int (*r)(void*, void*, int));
+static	int	lzcomp(LZstate*, LZblock*, uchar*, ushort*, int finish);
+static	void	wrblock(LZstate*, int, ushort*, ushort*, Huff*, Huff*);
+static	int	bitcost(Huff*, ulong*, int);
+static	int	huffcodes(Dyncode*, Huff*, Huff*);
+static	void	wrdyncode(LZstate*, Dyncode*);
+static	void	lzput(LZstate*, ulong bits, int nbits);
+static	void	lzflushbits(LZstate*);
+static	void	lzflush(LZstate *lz);
+static	void	lzwrite(LZstate *lz, void *buf, int n);
+
+static	int	hufftabinit(Huff*, int, ulong*, int);
+static	int	mkgzprecode(Huff*, ulong *, int, int);
+
+static	int	mkprecode(Huff*, ulong *, int, int, ulong*);
+static	void	nextchain(Chains*, int);
+static	void	leafsort(ulong*, ushort*, int, int);
+
+/* conversion from len to code word */
+static int lencode[MaxMatch];
+
+/*
+ * conversion from off to code word
+ * off <= MaxOffCode ? offcode[off] : bigoffcode[off >> 7]
+*/
+static int offcode[MaxOffCode];
+static int bigoffcode[256];
+
+/* litlen code words LenStart-285 extra bits */
+static int litlenbase[Nlitlen-LenStart];
+static int litlenextra[Nlitlen-LenStart] =
+{
+/* 257 */	0, 0, 0,
+/* 260 */	0, 0, 0, 0, 0, 1, 1, 1, 1, 2,
+/* 270 */	2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
+/* 280 */	4, 5, 5, 5, 5, 0, 0, 0
+};
+
+/* offset code word extra bits */
+static int offbase[Noff];
+static int offextra[] =
+{
+	0,  0,  0,  0,  1,  1,  2,  2,  3,  3,
+	4,  4,  5,  5,  6,  6,  7,  7,  8,  8,
+	9,  9,  10, 10, 11, 11, 12, 12, 13, 13,
+	0,  0,
+};
+
+/* order code lengths */
+static int clenorder[Nclen] =
+{
+        16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
+};
+
+/* static huffman tables */
+static	Huff	litlentab[Nlitlen];
+static	Huff	offtab[Noff];
+static	Huff	hofftab[Noff];
+
+/* bit reversal for brain dead endian swap in huffman codes */
+static	uchar	revtab[256];
+static	ulong	nlits;
+static	ulong	nmatches;
+
+int
+deflateinit(void)
+{
+	ulong bitcount[MaxHuffBits];
+	int i, j, ci, n;
+
+	/* byte reverse table */
+	for(i=0; i<256; i++)
+		for(j=0; j<8; j++)
+			if(i & (1<<j))
+				revtab[i] |= 0x80 >> j;
+
+	/* static Litlen bit lengths */
+	for(i=0; i<144; i++)
+		litlentab[i].bits = 8;
+	for(i=144; i<256; i++)
+		litlentab[i].bits = 9;
+	for(i=256; i<280; i++)
+		litlentab[i].bits = 7;
+	for(i=280; i<Nlitlen; i++)
+		litlentab[i].bits = 8;
+
+	memset(bitcount, 0, sizeof(bitcount));
+	bitcount[8] += 144 - 0;
+	bitcount[9] += 256 - 144;
+	bitcount[7] += 280 - 256;
+	bitcount[8] += Nlitlen - 280;
+
+	if(!hufftabinit(litlentab, Nlitlen, bitcount, 9))
+		return FlateInternal;
+
+	/* static offset bit lengths */
+	for(i = 0; i < Noff; i++)
+		offtab[i].bits = 5;
+
+	memset(bitcount, 0, sizeof(bitcount));
+	bitcount[5] = Noff;
+
+	if(!hufftabinit(offtab, Noff, bitcount, 5))
+		return FlateInternal;
+
+	bitcount[0] = 0;
+	bitcount[1] = 0;
+	if(!mkgzprecode(hofftab, bitcount, 2, MaxHuffBits))
+		return FlateInternal;
+
+	/* conversion tables for lens & offs to codes */
+	ci = 0;
+	for(i = LenStart; i < 286; i++){
+		n = ci + (1 << litlenextra[i - LenStart]);
+		litlenbase[i - LenStart] = ci;
+		for(; ci < n; ci++)
+			lencode[ci] = i;
+	}
+	/* patch up special case for len MaxMatch */
+	lencode[MaxMatch-MinMatch] = 285;
+	litlenbase[285-LenStart] = MaxMatch-MinMatch;
+
+	ci = 0;
+	for(i = 0; i < 16; i++){
+		n = ci + (1 << offextra[i]);
+		offbase[i] = ci;
+		for(; ci < n; ci++)
+			offcode[ci] = i;
+	}
+
+	ci = ci >> 7;
+	for(; i < 30; i++){
+		n = ci + (1 << (offextra[i] - 7));
+		offbase[i] = ci << 7;
+		for(; ci < n; ci++)
+			bigoffcode[ci] = i;
+	}
+	return FlateOk;
+}
+
+static void
+deflatereset(LZstate *lz, int level, int debug)
+{
+	memset(lz->nexts, 0, sizeof lz->nexts);
+	memset(lz->hash, 0, sizeof lz->hash);
+	lz->totr = 0;
+	lz->totw = 0;
+	lz->pos = 0;
+	lz->avail = 0;
+	lz->out = lz->obuf;
+	lz->eout = &lz->obuf[DeflateOut];
+	lz->prevlen = MinMatch - 1;
+	lz->prevoff = 0;
+	lz->now = MaxOff + 1;
+	lz->dot = lz->now;
+	lz->bits = 0;
+	lz->nbits = 0;
+	lz->maxcheck = (1 << level);
+	lz->maxcheck -= lz->maxcheck >> 2;
+	if(lz->maxcheck < 2)
+		lz->maxcheck = 2;
+	else if(lz->maxcheck > 1024)
+		lz->maxcheck = 1024;
+
+	lz->debug = debug;
+}
+
+int
+deflate(void *wr, int (*w)(void*, void*, int), void *rr, int (*r)(void*, void*, int), int level, int debug)
+{
+	LZstate *lz;
+	LZblock *lzb;
+	int ok;
+
+	lz = malloc(sizeof *lz + sizeof *lzb);
+	if(lz == nil)
+		return FlateNoMem;
+	lzb = (LZblock*)&lz[1];
+
+	deflatereset(lz, level, debug);
+	lz->w = w;
+	lz->wr = wr;
+	lz->wbad = 0;
+	lz->rbad = 0;
+	lz->eof = 0;
+	ok = FlateOk;
+	while(!lz->eof || lz->avail){
+		ok = deflateb(lz, lzb, rr, r);
+		if(ok != FlateOk)
+			break;
+	}
+	if(ok == FlateOk && lz->rbad)
+		ok = FlateInputFail;
+	if(ok == FlateOk && lz->wbad)
+		ok = FlateOutputFail;
+	free(lz);
+	return ok;
+}
+
+static int
+deflateb(LZstate *lz, LZblock *lzb, void *rr, int (*r)(void*, void*, int))
+{
+	Dyncode dyncode, hdyncode;
+	Huff dlitlentab[Nlitlen], dofftab[Noff], hlitlentab[Nlitlen];
+	ulong litcount[Nlitlen];
+	long nunc, ndyn, nfix, nhuff;
+	uchar *slop, *hslop;
+	ulong ep;
+	int i, n, m, mm, nslop;
+
+	memset(lzb->litlencount, 0, sizeof lzb->litlencount);
+	memset(lzb->offcount, 0, sizeof lzb->offcount);
+	lzb->litlencount[DeflateEob]++;
+
+	lzb->bytes = 0;
+	lzb->eparse = lzb->parse;
+	lzb->lastv = 0;
+	lzb->excost = 0;
+
+	slop = &lz->hist[lz->pos];
+	n = lz->avail;
+	while(n < DeflateBlock && (!lz->eof || lz->avail)){
+		/*
+		 * fill the buffer as much as possible,
+		 * while leaving room for MaxOff history behind lz->pos,
+		 * and not reading more than we can handle.
+		 *
+		 * make sure we read at least HistSlop bytes.
+		 */
+		if(!lz->eof){
+			ep = lz->pos + lz->avail;
+			if(ep >= HistBlock)
+				ep -= HistBlock;
+			m = HistBlock - MaxOff - lz->avail;
+			if(m > HistBlock - n)
+				m = HistBlock - n;
+			if(m > (HistBlock + HistSlop) - ep)
+				m = (HistBlock + HistSlop) - ep;
+			if(m & ~(BlockSize - 1))
+				m &= ~(BlockSize - 1);
+
+			/*
+			 * be nice to the caller: stop reads that are too small.
+			 * can only get here when we've already filled the buffer some
+			 */
+			if(m < HistSlop){
+				if(!m || !lzb->bytes)
+					return FlateInternal;
+				break;
+			}
+
+			mm = (*r)(rr, &lz->hist[ep], m);
+			if(mm > 0){
+				/*
+				 * wrap data to end if we're read it from the beginning
+				 * this way, we don't have to wrap searches.
+				 *
+				 * wrap reads past the end to the beginning.
+				 * this way, we can guarantee minimum size reads.
+				 */
+				if(ep < HistSlop)
+					memmove(&lz->hist[ep + HistBlock], &lz->hist[ep], HistSlop - ep);
+				else if(ep + mm > HistBlock)
+					memmove(&lz->hist[0], &lz->hist[HistBlock], ep + mm - HistBlock);
+
+				lz->totr += mm;
+				n += mm;
+				lz->avail += mm;
+			}else{
+				if(mm < 0)
+					lz->rbad = 1;
+				lz->eof = 1;
+			}
+		}
+		ep = lz->pos + lz->avail;
+		if(ep > HistSize)
+			ep = HistSize;
+		if(lzb->bytes + ep - lz->pos > DeflateMaxBlock)
+			ep = lz->pos + DeflateMaxBlock - lzb->bytes;
+		m = lzcomp(lz, lzb, &lz->hist[ep], lzb->eparse, lz->eof);
+		lzb->bytes += m;
+		lz->pos = (lz->pos + m) & (HistBlock - 1);
+		lz->avail -= m;
+	}
+	if(lzb->lastv)
+		*lzb->eparse++ = lzb->lastv;
+	if(lzb->eparse > lzb->parse + nelem(lzb->parse))
+		return FlateInternal;
+	nunc = lzb->bytes;
+
+	if(!mkgzprecode(dlitlentab, lzb->litlencount, Nlitlen, MaxHuffBits)
+	|| !mkgzprecode(dofftab, lzb->offcount, Noff, MaxHuffBits))
+		return FlateInternal;
+
+	ndyn = huffcodes(&dyncode, dlitlentab, dofftab);
+	if(ndyn < 0)
+		return FlateInternal;
+	ndyn += bitcost(dlitlentab, lzb->litlencount, Nlitlen)
+		+ bitcost(dofftab, lzb->offcount, Noff)
+		+ lzb->excost;
+
+	memset(litcount, 0, sizeof litcount);
+
+	nslop = nunc;
+	if(nslop > &lz->hist[HistSize] - slop)
+		nslop = &lz->hist[HistSize] - slop;
+
+	for(i = 0; i < nslop; i++)
+		litcount[slop[i]]++;
+	hslop = &lz->hist[HistSlop - nslop];
+	for(; i < nunc; i++)
+		litcount[hslop[i]]++;
+	litcount[DeflateEob]++;
+
+	if(!mkgzprecode(hlitlentab, litcount, Nlitlen, MaxHuffBits))
+		return FlateInternal;
+	nhuff = huffcodes(&hdyncode, hlitlentab, hofftab);
+	if(nhuff < 0)
+		return FlateInternal;
+	nhuff += bitcost(hlitlentab, litcount, Nlitlen);
+
+	nfix = bitcost(litlentab, lzb->litlencount, Nlitlen)
+		+ bitcost(offtab, lzb->offcount, Noff)
+		+ lzb->excost;
+
+	lzput(lz, lz->eof && !lz->avail, 1);
+
+	if(lz->debug){
+		fprint(2, "block: bytes=%lud entries=%ld extra bits=%d\n\tuncompressed=%lud fixed=%lud dynamic=%lud huffman=%lud\n",
+			nunc, lzb->eparse - lzb->parse, lzb->excost, (nunc + 4) * 8, nfix, ndyn, nhuff);
+		fprint(2, "\tnlit=%lud matches=%lud eof=%d\n", nlits, nmatches, lz->eof && !lz->avail);
+	}
+
+	if((nunc + 4) * 8 < ndyn && (nunc + 4) * 8 < nfix && (nunc + 4) * 8 < nhuff){
+		lzput(lz, DeflateUnc, 2);
+		lzflushbits(lz);
+
+		lzput(lz, nunc & 0xff, 8);
+		lzput(lz, (nunc >> 8) & 0xff, 8);
+		lzput(lz, ~nunc & 0xff, 8);
+		lzput(lz, (~nunc >> 8) & 0xff, 8);
+		lzflush(lz);
+
+		lzwrite(lz, slop, nslop);
+		lzwrite(lz, &lz->hist[HistSlop], nunc - nslop);
+	}else if(ndyn < nfix && ndyn < nhuff){
+		lzput(lz, DeflateDyn, 2);
+
+		wrdyncode(lz, &dyncode);
+		wrblock(lz, slop - lz->hist, lzb->parse, lzb->eparse, dlitlentab, dofftab);
+		lzput(lz, dlitlentab[DeflateEob].encode, dlitlentab[DeflateEob].bits);
+	}else if(nhuff < nfix){
+		lzput(lz, DeflateDyn, 2);
+
+		wrdyncode(lz, &hdyncode);
+
+		m = 0;
+		for(i = nunc; i > MaxLitRun; i -= MaxLitRun)
+			lzb->parse[m++] = MaxLitRun;
+		lzb->parse[m++] = i;
+
+		wrblock(lz, slop - lz->hist, lzb->parse, lzb->parse + m, hlitlentab, hofftab);
+		lzput(lz, hlitlentab[DeflateEob].encode, hlitlentab[DeflateEob].bits);
+	}else{
+		lzput(lz, DeflateFix, 2);
+
+		wrblock(lz, slop - lz->hist, lzb->parse, lzb->eparse, litlentab, offtab);
+		lzput(lz, litlentab[DeflateEob].encode, litlentab[DeflateEob].bits);
+	}
+
+	if(lz->eof && !lz->avail){
+		lzflushbits(lz);
+		lzflush(lz);
+	}
+	return FlateOk;
+}
+
+static void
+lzwrite(LZstate *lz, void *buf, int n)
+{
+	int nw;
+
+	if(n && lz->w){
+		nw = (*lz->w)(lz->wr, buf, n);
+		if(nw != n){
+			lz->w = nil;
+			lz->wbad = 1;
+		}else
+			lz->totw += n;
+	}
+}
+
+static void
+lzflush(LZstate *lz)
+{
+	lzwrite(lz, lz->obuf, lz->out - lz->obuf);
+	lz->out = lz->obuf;
+}
+
+static void
+lzput(LZstate *lz, ulong bits, int nbits)
+{
+	bits = (bits << lz->nbits) | lz->bits;
+	for(nbits += lz->nbits; nbits >= 8; nbits -= 8){
+		*lz->out++ = bits;
+		if(lz->out == lz->eout)
+			lzflush(lz);
+		bits >>= 8;
+	}
+	lz->bits = bits;
+	lz->nbits = nbits;
+}
+
+static void
+lzflushbits(LZstate *lz)
+{
+	if(lz->nbits)
+		lzput(lz, 0, 8 - (lz->nbits & 7));
+}
+
+/*
+ * write out a block of n samples,
+ * given lz encoding and counts for huffman tables
+ */
+static void
+wrblock(LZstate *out, int litoff, ushort *soff, ushort *eoff, Huff *litlentab, Huff *offtab)
+{
+	ushort *off;
+	int i, run, offset, lit, len, c;
+
+	if(out->debug > 2){
+		for(off = soff; off < eoff; ){
+			offset = *off++;
+			run = offset & MaxLitRun;
+			if(run){
+				for(i = 0; i < run; i++){
+					lit = out->hist[litoff & (HistBlock - 1)];
+					litoff++;
+					fprint(2, "\tlit %.2ux %c\n", lit, lit);
+				}
+				if(!(offset & LenFlag))
+					continue;
+				len = offset >> LenShift;
+				offset = *off++;
+			}else if(offset & LenFlag){
+				len = offset >> LenShift;
+				offset = *off++;
+			}else{
+				len = 0;
+				offset >>= LenShift;
+			}
+			litoff += len + MinMatch;
+			fprint(2, "\t<%d, %d>\n", offset + 1, len + MinMatch);
+		}
+	}
+
+	for(off = soff; off < eoff; ){
+		offset = *off++;
+		run = offset & MaxLitRun;
+		if(run){
+			for(i = 0; i < run; i++){
+				lit = out->hist[litoff & (HistBlock - 1)];
+				litoff++;
+				lzput(out, litlentab[lit].encode, litlentab[lit].bits);
+			}
+			if(!(offset & LenFlag))
+				continue;
+			len = offset >> LenShift;
+			offset = *off++;
+		}else if(offset & LenFlag){
+			len = offset >> LenShift;
+			offset = *off++;
+		}else{
+			len = 0;
+			offset >>= LenShift;
+		}
+		litoff += len + MinMatch;
+		c = lencode[len];
+		lzput(out, litlentab[c].encode, litlentab[c].bits);
+		c -= LenStart;
+		if(litlenextra[c])
+			lzput(out, len - litlenbase[c], litlenextra[c]);
+
+		if(offset < MaxOffCode)
+			c = offcode[offset];
+		else
+			c = bigoffcode[offset >> 7];
+		lzput(out, offtab[c].encode, offtab[c].bits);
+		if(offextra[c])
+			lzput(out, offset - offbase[c], offextra[c]);
+	}
+}
+
+/*
+ * look for the longest, closest string which matches
+ * the next prefix.  the clever part here is looking for
+ * a string 1 longer than the previous best match.
+ *
+ * follows the recommendation of limiting number of chains
+ * which are checked.  this appears to be the best heuristic.
+ */
+static int
+lzmatch(int now, int then, uchar *p, uchar *es, ushort *nexts, uchar *hist, int runlen, int check, int *m)
+{
+	uchar *s, *t;
+	int ml, off, last;
+
+	ml = check;
+	if(runlen >= 8)
+		check >>= 2;
+	*m = 0;
+	if(p + runlen >= es)
+		return runlen;
+	last = 0;
+	for(; check-- > 0; then = nexts[then & (MaxOff-1)]){
+		off = (ushort)(now - then);
+		if(off <= last || off > MaxOff)
+			break;
+		s = p + runlen;
+		t = hist + (((p - hist) - off) & (HistBlock-1));
+		t += runlen;
+		for(; s >= p; s--){
+			if(*s != *t)
+				goto matchloop;
+			t--;
+		}
+
+		/*
+		 * we have a new best match.
+		 * extend it to it's maximum length
+		 */
+		t += runlen + 2;
+		s += runlen + 2;
+		for(; s < es; s++){
+			if(*s != *t)
+				break;
+			t++;
+		}
+		runlen = s - p;
+		*m = off - 1;
+		if(s == es || runlen > ml)
+			break;
+matchloop:;
+		last = off;
+	}
+	return runlen;
+}
+
+static int
+lzcomp(LZstate *lz, LZblock *lzb, uchar *ep, ushort *parse, int finish)
+{
+	ulong cont, excost, *litlencount, *offcount;
+	uchar *p, *q, *s, *es;
+	ushort *nexts, *hash;
+	int v, i, h, runlen, n, now, then, m, prevlen, prevoff, maxdefer;
+
+	litlencount = lzb->litlencount;
+	offcount = lzb->offcount;
+	nexts = lz->nexts;
+	hash = lz->hash;
+	now = lz->now;
+
+	p = &lz->hist[lz->pos];
+	if(lz->prevlen != MinMatch - 1)
+		p++;
+
+	/*
+	 * hash in the links for any hanging link positions,
+	 * and calculate the hash for the current position.
+	 */
+	n = MinMatch;
+	if(n > ep - p)
+		n = ep - p;
+	cont = 0;
+	for(i = 0; i < n - 1; i++){
+		m = now - ((MinMatch-1) - i);
+		if(m < lz->dot)
+			continue;
+		s = lz->hist + (((p - lz->hist) - (now - m)) & (HistBlock-1));
+
+		cont = (s[0] << 16) | (s[1] << 8) | s[2];
+		h = hashit(cont);
+		prevoff = 0;
+		for(then = hash[h]; ; then = nexts[then & (MaxOff-1)]){
+			v = (ushort)(now - then);
+			if(v <= prevoff || v >= (MinMatch-1) - i)
+				break;
+			prevoff = v;
+		}
+		if(then == (ushort)m)
+			continue;
+		nexts[m & (MaxOff-1)] = hash[h];
+		hash[h] = m;
+	}
+	for(i = 0; i < n; i++)
+		cont = (cont << 8) | p[i];
+
+	/*
+	 * now must point to the index in the nexts array
+	 * corresponding to p's position in the history
+	 */
+	prevlen = lz->prevlen;
+	prevoff = lz->prevoff;
+	maxdefer = lz->maxcheck >> 2;
+	excost = 0;
+	v = lzb->lastv;
+	for(;;){
+		es = p + MaxMatch;
+		if(es > ep){
+			if(!finish || p >= ep)
+				break;
+			es = ep;
+		}
+
+		h = hashit(cont);
+		runlen = lzmatch(now, hash[h], p, es, nexts, lz->hist, prevlen, lz->maxcheck, &m);
+
+		/*
+		 * back out of small matches too far in the past
+		 */
+		if(runlen == MinMatch && m >= MinMatchMaxOff){
+			runlen = MinMatch - 1;
+			m = 0;
+		}
+
+		/*
+		 * record the encoding and increment counts for huffman trees
+		 * if we get a match, defer selecting it until we check for
+		 * a longer match at the next position.
+		 */
+		if(prevlen >= runlen && prevlen != MinMatch - 1){
+			/*
+			 * old match at least as good; use that one
+			 */
+			n = prevlen - MinMatch;
+			if(v || n){
+				*parse++ = v | LenFlag | (n << LenShift);
+				*parse++ = prevoff;
+			}else
+				*parse++ = prevoff << LenShift;
+			v = 0;
+
+			n = lencode[n];
+			litlencount[n]++;
+			excost += litlenextra[n - LenStart];
+
+			if(prevoff < MaxOffCode)
+				n = offcode[prevoff];
+			else
+				n = bigoffcode[prevoff >> 7];
+			offcount[n]++;
+			excost += offextra[n];
+
+			runlen = prevlen - 1;
+			prevlen = MinMatch - 1;
+			nmatches++;
+		}else if(runlen == MinMatch - 1){
+			/*
+			 * no match; just put out the literal
+			 */
+			if(++v == MaxLitRun){
+				*parse++ = v;
+				v = 0;
+			}
+			litlencount[*p]++;
+			nlits++;
+			runlen = 1;
+		}else{
+			if(prevlen != MinMatch - 1){
+				/*
+				 * longer match now. output previous literal,
+				 * update current match, and try again
+				 */
+				if(++v == MaxLitRun){
+					*parse++ = v;
+					v = 0;
+				}
+				litlencount[p[-1]]++;
+				nlits++;
+			}
+
+			prevoff = m;
+
+			if(runlen < maxdefer){
+				prevlen = runlen;
+				runlen = 1;
+			}else{
+				n = runlen - MinMatch;
+				if(v || n){
+					*parse++ = v | LenFlag | (n << LenShift);
+					*parse++ = prevoff;
+				}else
+					*parse++ = prevoff << LenShift;
+				v = 0;
+
+				n = lencode[n];
+				litlencount[n]++;
+				excost += litlenextra[n - LenStart];
+
+				if(prevoff < MaxOffCode)
+					n = offcode[prevoff];
+				else
+					n = bigoffcode[prevoff >> 7];
+				offcount[n]++;
+				excost += offextra[n];
+
+				prevlen = MinMatch - 1;
+				nmatches++;
+			}
+		}
+
+		/*
+		 * update the hash for the newly matched data
+		 * this is constructed so the link for the old
+		 * match in this position must be at the end of a chain,
+		 * and will expire when this match is added, ie it will
+		 * never be examined by the match loop.
+		 * add to the hash chain only if we have the real hash data.
+		 */
+		for(q = p + runlen; p != q; p++){
+			if(p + MinMatch <= ep){
+				h = hashit(cont);
+				nexts[now & (MaxOff-1)] = hash[h];
+				hash[h] = now;
+				if(p + MinMatch < ep)
+					cont = (cont << 8) | p[MinMatch];
+			}
+			now++;
+		}
+	}
+
+	/*
+	 * we can just store away the lazy state and
+	 * pick it up next time.  the last block will have finish set
+	 * so we won't have any pending matches
+	 * however, we need to correct for how much we've encoded
+	 */
+	if(prevlen != MinMatch - 1)
+		p--;
+
+	lzb->excost += excost;
+	lzb->eparse = parse;
+	lzb->lastv = v;
+
+	lz->now = now;
+	lz->prevlen = prevlen;
+	lz->prevoff = prevoff;
+
+	return p - &lz->hist[lz->pos];
+}
+
+/*
+ * make up the dynamic code tables, and return the number of bits
+ * needed to transmit them.
+ */
+static int
+huffcodes(Dyncode *dc, Huff *littab, Huff *offtab)
+{
+	Huff *codetab;
+	uchar *codes, *codeaux;
+	ulong codecount[Nclen], excost;
+	int i, n, m, v, c, nlit, noff, ncode, nclen;
+
+	codetab = dc->codetab;
+	codes = dc->codes;
+	codeaux = dc->codeaux;
+
+	/*
+	 * trim the sizes of the tables
+	 */
+	for(nlit = Nlitlen; nlit > 257 && littab[nlit-1].bits == 0; nlit--)
+		;
+	for(noff = Noff; noff > 1 && offtab[noff-1].bits == 0; noff--)
+		;
+
+	/*
+	 * make the code-length code
+	 */
+	for(i = 0; i < nlit; i++)
+		codes[i] = littab[i].bits;
+	for(i = 0; i < noff; i++)
+		codes[i + nlit] = offtab[i].bits;
+
+	/*
+	 * run-length compress the code-length code
+	 */
+	excost = 0;
+	c = 0;
+	ncode = nlit+noff;
+	for(i = 0; i < ncode; ){
+		n = i + 1;
+		v = codes[i];
+		while(n < ncode && v == codes[n])
+			n++;
+		n -= i;
+		i += n;
+		if(v == 0){
+			while(n >= 11){
+				m = n;
+				if(m > 138)
+					m = 138;
+				codes[c] = 18;
+				codeaux[c++] = m - 11;
+				n -= m;
+				excost += 7;
+			}
+			if(n >= 3){
+				codes[c] = 17;
+				codeaux[c++] = n - 3;
+				n = 0;
+				excost += 3;
+			}
+		}
+		while(n--){
+			codes[c++] = v;
+			while(n >= 3){
+				m = n;
+				if(m > 6)
+					m = 6;
+				codes[c] = 16;
+				codeaux[c++] = m - 3;
+				n -= m;
+				excost += 3;
+			}
+		}
+	}
+
+	memset(codecount, 0, sizeof codecount);
+	for(i = 0; i < c; i++)
+		codecount[codes[i]]++;
+	if(!mkgzprecode(codetab, codecount, Nclen, 8))
+		return -1;
+
+	for(nclen = Nclen; nclen > 4 && codetab[clenorder[nclen-1]].bits == 0; nclen--)
+		;
+
+	dc->nlit = nlit;
+	dc->noff = noff;
+	dc->nclen = nclen;
+	dc->ncode = c;
+
+	return 5 + 5 + 4 + nclen * 3 + bitcost(codetab, codecount, Nclen) + excost;
+}
+
+static void
+wrdyncode(LZstate *out, Dyncode *dc)
+{
+	Huff *codetab;
+	uchar *codes, *codeaux;
+	int i, v, c;
+
+	/*
+	 * write out header, then code length code lengths,
+	 * and code lengths
+	 */
+	lzput(out, dc->nlit-257, 5);
+	lzput(out, dc->noff-1, 5);
+	lzput(out, dc->nclen-4, 4);
+
+	codetab = dc->codetab;
+	for(i = 0; i < dc->nclen; i++)
+		lzput(out, codetab[clenorder[i]].bits, 3);
+
+	codes = dc->codes;
+	codeaux = dc->codeaux;
+	c = dc->ncode;
+	for(i = 0; i < c; i++){
+		v = codes[i];
+		lzput(out, codetab[v].encode, codetab[v].bits);
+		if(v >= 16){
+			if(v == 16)
+				lzput(out, codeaux[i], 2);
+			else if(v == 17)
+				lzput(out, codeaux[i], 3);
+			else /* v == 18 */
+				lzput(out, codeaux[i], 7);
+		}
+	}
+}
+
+static int
+bitcost(Huff *tab, ulong *count, int n)
+{
+	ulong tot;
+	int i;
+
+	tot = 0;
+	for(i = 0; i < n; i++)
+		tot += count[i] * tab[i].bits;
+	return tot;
+}
+
+static int
+mkgzprecode(Huff *tab, ulong *count, int n, int maxbits)
+{
+	ulong bitcount[MaxHuffBits];
+	int i, nbits;
+
+	nbits = mkprecode(tab, count, n, maxbits, bitcount);
+	for(i = 0; i < n; i++){
+		if(tab[i].bits == -1)
+			tab[i].bits = 0;
+		else if(tab[i].bits == 0){
+			if(nbits != 0 || bitcount[0] != 1)
+				return 0;
+			bitcount[1] = 1;
+			bitcount[0] = 0;
+			nbits = 1;
+			tab[i].bits = 1;
+		}
+	}
+	if(bitcount[0] != 0)
+		return 0;
+	return hufftabinit(tab, n, bitcount, nbits);
+}
+
+static int
+hufftabinit(Huff *tab, int n, ulong *bitcount, int nbits)
+{
+	ulong code, nc[MaxHuffBits];
+	int i, bits;
+
+	code = 0;
+	for(bits = 1; bits <= nbits; bits++){
+		code = (code + bitcount[bits-1]) << 1;
+		nc[bits] = code;
+	}
+
+	for(i = 0; i < n; i++){
+		bits = tab[i].bits;
+		if(bits){
+			code = nc[bits]++ << (16 - bits);
+			if(code & ~0xffff)
+				return 0;
+			tab[i].encode = revtab[code >> 8] | (revtab[code & 0xff] << 8);
+		}
+	}
+	return 1;
+}
+
+
+/*
+ * this should be in a library
+ */
+struct Chain
+{
+	ulong	count;				/* occurances of everything in the chain */
+	ushort	leaf;				/* leaves to the left of chain, or leaf value */
+	char	col;				/* ref count for collecting unused chains */
+	char	gen;				/* need to generate chains for next lower level */
+	Chain	*up;				/* Chain up in the lists */
+};
+
+struct Chains
+{
+	Chain	*lists[(MaxHuffBits - 1) * 2];
+	ulong	leafcount[MaxLeaf];		/* sorted list of leaf counts */
+	ushort	leafmap[MaxLeaf];		/* map to actual leaf number */
+	int	nleaf;				/* number of leaves */
+	Chain	chains[ChainMem];
+	Chain	*echains;
+	Chain	*free;
+	char	col;
+	int	nlists;
+};
+
+/*
+ * fast, low space overhead algorithm for max depth huffman type codes
+ *
+ * J. Katajainen, A. Moffat and A. Turpin, "A fast and space-economical
+ * algorithm for length-limited coding," Proc. Intl. Symp. on Algorithms
+ * and Computation, Cairns, Australia, Dec. 1995, Lecture Notes in Computer
+ * Science, Vol 1004, J. Staples, P. Eades, N. Katoh, and A. Moffat, eds.,
+ * pp 12-21, Springer Verlag, New York, 1995.
+ */
+static int
+mkprecode(Huff *tab, ulong *count, int n, int maxbits, ulong *bitcount)
+{
+	Chains cs;
+	Chain *c;
+	int i, m, em, bits;
+
+	/*
+	 * set up the sorted list of leaves
+	 */
+	m = 0;
+	for(i = 0; i < n; i++){
+		tab[i].bits = -1;
+		tab[i].encode = 0;
+		if(count[i] != 0){
+			cs.leafcount[m] = count[i];
+			cs.leafmap[m] = i;
+			m++;
+		}
+	}
+	if(m < 2){
+		if(m != 0){
+			tab[cs.leafmap[0]].bits = 0;
+			bitcount[0] = 1;
+		}else
+			bitcount[0] = 0;
+		return 0;
+	}
+	cs.nleaf = m;
+	leafsort(cs.leafcount, cs.leafmap, 0, m);
+
+	for(i = 0; i < m; i++)
+		cs.leafcount[i] = count[cs.leafmap[i]];
+
+	/*
+	 * set up free list
+	 */
+	cs.free = &cs.chains[2];
+	cs.echains = &cs.chains[ChainMem];
+	cs.col = 1;
+
+	/*
+	 * initialize chains for each list
+	 */
+	c = &cs.chains[0];
+	c->count = cs.leafcount[0];
+	c->leaf = 1;
+	c->col = cs.col;
+	c->up = nil;
+	c->gen = 0;
+	cs.chains[1] = cs.chains[0];
+	cs.chains[1].leaf = 2;
+	cs.chains[1].count = cs.leafcount[1];
+	for(i = 0; i < maxbits-1; i++){
+		cs.lists[i * 2] = &cs.chains[0];
+		cs.lists[i * 2 + 1] = &cs.chains[1];
+	}
+
+	cs.nlists = 2 * (maxbits - 1);
+	m = 2 * m - 2;
+	for(i = 2; i < m; i++)
+		nextchain(&cs, cs.nlists - 2);
+
+	bits = 0;
+	bitcount[0] = cs.nleaf;
+	for(c = cs.lists[cs.nlists - 1]; c != nil; c = c->up){
+		m = c->leaf;
+		bitcount[bits++] -= m;
+		bitcount[bits] = m;
+	}
+	m = 0;
+	for(i = bits; i >= 0; i--)
+		for(em = m + bitcount[i]; m < em; m++)
+			tab[cs.leafmap[m]].bits = i;
+
+	return bits;
+}
+
+/*
+ * calculate the next chain on the list
+ * we can always toss out the old chain
+ */
+static void
+nextchain(Chains *cs, int list)
+{
+	Chain *c, *oc;
+	int i, nleaf, sumc;
+
+	oc = cs->lists[list + 1];
+	cs->lists[list] = oc;
+	if(oc == nil)
+		return;
+
+	/*
+	 * make sure we have all chains needed to make sumc
+	 * note it is possible to generate only one of these,
+	 * use twice that value for sumc, and then generate
+	 * the second if that preliminary sumc would be chosen.
+	 * however, this appears to be slower on current tests
+	 */
+	if(oc->gen){
+		nextchain(cs, list - 2);
+		nextchain(cs, list - 2);
+		oc->gen = 0;
+	}
+
+	/*
+	 * pick up the chain we're going to add;
+	 * collect unused chains no free ones are left
+	 */
+	for(c = cs->free; ; c++){
+		if(c >= cs->echains){
+			cs->col++;
+			for(i = 0; i < cs->nlists; i++)
+				for(c = cs->lists[i]; c != nil; c = c->up)
+					c->col = cs->col;
+			c = cs->chains;
+		}
+		if(c->col != cs->col)
+			break;
+	}
+
+	/*
+	 * pick the cheapest of
+	 * 1) the next package from the previous list
+	 * 2) the next leaf
+	 */
+	nleaf = oc->leaf;
+	sumc = 0;
+	if(list > 0 && cs->lists[list-1] != nil)
+		sumc = cs->lists[list-2]->count + cs->lists[list-1]->count;
+	if(sumc != 0 && (nleaf >= cs->nleaf || cs->leafcount[nleaf] > sumc)){
+		c->count = sumc;
+		c->leaf = oc->leaf;
+		c->up = cs->lists[list-1];
+		c->gen = 1;
+	}else if(nleaf >= cs->nleaf){
+		cs->lists[list + 1] = nil;
+		return;
+	}else{
+		c->leaf = nleaf + 1;
+		c->count = cs->leafcount[nleaf];
+		c->up = oc->up;
+		c->gen = 0;
+	}
+	cs->free = c + 1;
+
+	cs->lists[list + 1] = c;
+	c->col = cs->col;
+}
+
+static int
+pivot(ulong *c, int a, int n)
+{
+	int j, pi, pj, pk;
+
+	j = n/6;
+	pi = a + j;	/* 1/6 */
+	j += j;
+	pj = pi + j;	/* 1/2 */
+	pk = pj + j;	/* 5/6 */
+	if(c[pi] < c[pj]){
+		if(c[pi] < c[pk]){
+			if(c[pj] < c[pk])
+				return pj;
+			return pk;
+		}
+		return pi;
+	}
+	if(c[pj] < c[pk]){
+		if(c[pi] < c[pk])
+			return pi;
+		return pk;
+	}
+	return pj;
+}
+
+static	void
+leafsort(ulong *leafcount, ushort *leafmap, int a, int n)
+{
+	ulong t;
+	int j, pi, pj, pn;
+
+	while(n > 1){
+		if(n > 10){
+			pi = pivot(leafcount, a, n);
+		}else
+			pi = a + (n>>1);
+
+		t = leafcount[pi];
+		leafcount[pi] = leafcount[a];
+		leafcount[a] = t;
+		t = leafmap[pi];
+		leafmap[pi] = leafmap[a];
+		leafmap[a] = t;
+		pi = a;
+		pn = a + n;
+		pj = pn;
+		for(;;){
+			do
+				pi++;
+			while(pi < pn && (leafcount[pi] < leafcount[a] || leafcount[pi] == leafcount[a] && leafmap[pi] > leafmap[a]));
+			do
+				pj--;
+			while(pj > a && (leafcount[pj] > leafcount[a] || leafcount[pj] == leafcount[a] && leafmap[pj] < leafmap[a]));
+			if(pj < pi)
+				break;
+			t = leafcount[pi];
+			leafcount[pi] = leafcount[pj];
+			leafcount[pj] = t;
+			t = leafmap[pi];
+			leafmap[pi] = leafmap[pj];
+			leafmap[pj] = t;
+		}
+		t = leafcount[a];
+		leafcount[a] = leafcount[pj];
+		leafcount[pj] = t;
+		t = leafmap[a];
+		leafmap[a] = leafmap[pj];
+		leafmap[pj] = t;
+		j = pj - a;
+
+		n = n-j-1;
+		if(j >= n){
+			leafsort(leafcount, leafmap, a, j);
+			a += j+1;
+		}else{
+			leafsort(leafcount, leafmap, a + (j+1), n);
+			n = j;
+		}
+	}
+}